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COUNTING PSEUDO-HOLOMORPHIC
SUBMANIFOLDS IN DIMENSION 4

CLIFFORD HENRY TAUBES

The purpose of this article is to describe a certain invariant (called
the Gromov invariant) for compact symplectic 4-manifolds which assigns
an integer to each dimension 2-cohomology class. Roughly speaking, the
invariant counts, with suitable weights, compact, pseudo-holomorphic
submanifolds whose fundamental class is Poincaré dual to the cohomol-
ogy class in question.

A version of this invariant was introduced originally by Gromov [2]
to study the deformation classes of symplectic structures on manifolds
with the homology of CP?. Subsequently, Ruan [7] extended Gromov’s
constructions to all symplectic 4-manifolds; the generalization of Ruan
counts only connected, pseudo-holomorphic submanifolds. The invari-
ant described below generalizes the construction of Ruan. The defini-
tion was sketched in [10] where the invariant was identified with the
Seiberg-Witten invariants [13] of the symplectic manifold. However,
the definition in [10] is incomplete in one respect - in its description of
counting weights for multiply covered tori with trivial normal bundle.
(The discussion in [7] is erroneous in this regard.) Thus, this article also
serves to clear up any confusion stemming from counting these multiply
covered tori.

Note that the equivalence claimed in [10] between the Seiberg- Wit-
ten invariant and the Gromov invariant as defined here holds for man-
ifolds with 52t > 1. The details of the proof will appear shortly (see
(11], [12]).

This article is organized as follows: Section 1 defines the Gromov
invariant as a weighted count of pseudo-holomorphic submanifolds. (See
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PSEUDO-HOLOMORPHIC SUBMANIFOLDS

Theorem 1.1.) The definition in Section 1 is complete modulo two aux-
illiary definitions. The first of these describes the counting weight to
give a connected component of some pseudo-holomorphic submanifold.
These weights are described in Sections 2 and 3, first for non-multiply
covered components, and then for multiply covered, toroidal compo-
nents. As is usually the case in these matters, the counting can be done
most efficiently when the almost complex structure is an appropriately
generic one. The definition of “appropriately” is the other missing piece
from Section 1 and is given in Section 4.

The proof of Theorem 1.1 and various other assertions in Sections
1-4 are deferred to Section 5. The sixth section provides an example
which demonstrates the necessity of some of the complications in the
counting definition for multiply covered, pseudo-holomorphic tori from
Section'3. (The example in Section 6 exhibits one of the problems with
the definition in [10].) The final section is here for fun; it provides a
localization proof of the Riemann-Roch formula for curves by exploiting
a certain C-antilinear perturbation of the Cauchy-Riemann operator
which plays a major role in the earlier sections.

1. The definition of Gr

In all that follows, X denotes a compact, connected 4-dimensional
manifold with a symplectic form, denoted by w. The purpose of this
section and the next two sections is to define a map

(1.1) Gr: H¥(X;Z) — Z

whose value depends only on the form w up to continuous homotopies
through symplectic forms. The definition of Gr in (1.1) is a two-step
affair. The first step, below serves as a digression to introduce the reader
to some basic facts about symplectic 4-manifolds.

Step 1. Because w is non-degenerate, the 4-form w A w orients X.
This orientation will be implicit in what follows.

Let J denote an almost complex structure for 7'X which is compat-
ible with the form w. Thus, J is a section of End(T°X) whose square is
minus the identity. And, the bilinear form g = w(-, J(-)) on T'X defines
a Riemannian metric. The almost complex structure splits 7X @ C as
T 0®T),1 where the former consists of the holomorphic tangent vectors,
i.e., vector of the form v — ¢ - Jv where v is in TX. The complexified
cotangent bundle, T* X ® C splits analogously as T19 g 791, Note that
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820 CLIFFORD HENRY TAUBES

the canonical bundle of X is, by definition, the complex line bundle
K = det(T19).

Given J, one can introduce the notion of a pseudoholomorphic sub-
manifold in X. Call a compact submanifold ¥ C X pseudo-holomorphic
when J maps TY to itself as a subspace of T'X|y,. Note that such a
pseudo-holomorphic submanifold is automatically symplectic and so in-
herits a natural orientation. In particular, the fundamental class, [Z],
is non-zero and of infinite order in Ho(X;Z).

A connected, pseudo-holomorphic submanifold 3 has the special
property that its genus is determined apriori by the class [E] via the
adjunction formula:

(1.2) genus(¥) =1+ é(e ‘e+c-e).

Here, e denotes the Poincaré dual to [X], and ¢ denotes the first Chern
class of K. The notation - signifies the cup product pairing on the two
dimensional cohomology. (Thus, e - e is equal to the Euler number of
the normal bundle of ¥ when the latter is oriented in the natural way.)

By the way, since almost complex structures on 2-dimensional mani-
folds are always integrable, ¥ inherits from X the structure of a complex
holomorphic curve. As a complex curve, the embedding of ¥ into X is
a pseudo-holomorphic map in the sense used by Gromov [2]. (A smooth
map ¢ from a complex curve ¥ into X is called pseudo-holomorphic
when ¢ intertwines the almost complex structure on ¥ with that on
X.)} In any event, the complex structure on ¥ which is induced by its
embedding in X will be implicit in much of what follows.

Step 2. Fix e = H?(X;Z). First, introduce the integer

(1.3) d=d(e):%(e-e—c'e).

(This is an integer because c-e = e-e mod (2) for all classes e.)

If the integer d in (1.3) is positive, choose a set 2 C X of d distinct
points. Now, introduce the set H = H(e, J,§2) whose elements are
the (unordered) sets of pairs {(Ck, my)} of disjoint, connected, pseudo-
holomorphic submanifold C}, C X and positive integer my, which are
constrained as follows:
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(1.4)

1. Let e, € H?(X;Z) denote the Poincaré dual of the fundamental
class of Cj. Introduce dj, as in (1.3) and require that dy > 0.

2. If dx, > 0, then C} contains precisely dy members of the set 2.

3. The integer my = 1 unless C is a torus with trivial normal bundle.
This happens if and only if e - e, = ¢ e, = 0.

4. kaek = €.
k

By the way, note that when h = {(Ck,m;)} € H, the various Cj
are pairwise disjoint. This implies that the classes {e} are pairwise or-
thogonal with respect to the cup product pairing. (Pseudo-holomorphic
submanifolds can have only positive local intersection number [2], [4].)
And, this mutual orthogonality implies that

(1.5) > dp =d.
k

With H understood, remark that the value of the Gromov invariant
for e is defined below by making a weighted count of the elements of
‘H when using a suitably generic choice for J and Q. In this regard,
note that the set H(e,J,2) is finite for a suitably generic choice of
(J,Q); this assertion is made precise below. Furthermore, for a suitably
generic choice of (J, ), the count of elements in H(e, J,Q2) is obtained
by weighing each h = {(Ck, my)} € H(e, J, Q) by a product of integers

(1.6) q(h) = [ [ r(Cr, ).
k

Here, r(-) is an integer assignment to pairs (C,m) of positive integer m
and pseudo-holomorphic submanifold C' C X.

Suppose that d > 0. With r(-) as given below (in (2.13) and Defini-
tion 3.2), the Gromov invariant for e is defined to be

(1.7) Gr(e) =) _q(h),
h
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822 CLIFFORD HENRY TAUBES

where the sum is over elements h € H(e, J, ), and H (e, J, Q) is defined
with respect to a suitably generic choice of w-compatible, almost com-
plex structure J on X and set Q of distinct of d (when d > 0) points in
X. (This is the set of admissable (J,2) as characterized in Definition
4.2 and Proposition 4.3, below.)

When d in (1.3) is negative, set

(1.8) Gr(e) = 0.

Given these specifications, consider:

Theorem 1.1. Let X be a compact 4-manifold with symplectic form
w. Fiz a class e € H*(X;7), and use (2.13) and Definition 3.2 to spec-
ify r(-). Then, compute (1.7) with H(e, J, Q) defined from an admissable
pair (J,2) as described in Definition 4.2 and Proposition 4.3. The re-
sulting assignment of integers to classes in H?(X;Z) defines a map,
Gr(+), which is independent of the precise choice of (J,2). Furthermore
if wy is a second symplectic form on X, then the resulting Gr(-) maps
agree when there is a path of symplectic forms in C*®(X, A2T*) which
begins at w and ends at w1. Finally, if @ is a diffeomorphism of X, then
Gr(v*(-)) as computed with p*w is the same as Gr(-) as computed with
w.

The proof of this theorem is given in Section 5.

There is a natural generalization of this Gromov invariant which was
introduced in a physics context by Witten [14] (see, also [5], [8]). This
generalization takes the form of a map

(1.9). GW : HY(X;Z) » N*HY (X, Z),

which has the property that GW(e) projects to the summand
Z € A* as Gr(e). (Remember that A® ~ Z.)
The definition of GW (e) occupies the three steps that follow.

Step 1. Let d = d(e). Then GW(e)(:) annihilates APH;(X;Z) when
p > 2-dor when p is odd.

Step 2. Fix an integer n € {0,... ,d(e)} and an ordered set I' =
{71,-.+ ,72n} of disjoint, oriented, 1-dimensional submanifolds in X.
Also, fix a set & C X of d — n distinct points. Now introduce the set
H = H(e, J,T', Q) whose typical element, Ak, consists of an unordered set
of triples {(Ck, mg, ')} for which a given triple (Cy, mg,I'y) consists of
a compact, pseudo-holomorphic submanifold Cy, a positive integer my,
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and an unordered subset 'y C I" of an even number of elements. Each
component (Ck, mg,'x) of h is further constrained as follows:

(1.10)

1. For each k, define di as in (1.4.1), and require dy > 0.

2. For each k, let 2n; denote the number of elements of I'y. Then
0 < ng < dy,

3. For each k, C contains precisely dx —ny, points of 2, and intersects
each member of I'y exactly once.

4. If k # k', then T is disjoint from I'y; but require that Uy = T.
5. If k # k', then Cj, is disjoint from Cj..

6. For each k, m; = 1 unless C}, is a torus with trivial normal bundle
in which case my > 1 is allowed.

7. > Mk e =e.

Step 8. For each j, let [y;] denote the equivalence class of +y; in
H,(X;Z)/ Torsion. Then set ¢ = [y1] A[y2] A... A[y2n]. Theorem 1.2,
below, asserts that for a suitably generic choice of (J,Q,T"), the set H is
finite. In particular, for a suitably generic choice of (J,§2,T’), the value
of GW(e)(¢$) can be computed by counting the members of H in the
appropriate way. This count for GW (e)(¢) is given by (1.7) where g(h)
is computed via

(1.11) q(h) = (—=1)°™ T, r(Ck, m, T'x).

Here, o(h) € {0,1}, and each r7(Ck,mk, k) is an integer. Note that
o(h) is defined at the end of the next section (see (2.14).) Meanwhile,
r(C,m, ) = r(C,m), where the latter is defined in (2.13) or Definition
3.2. Finally, r(C,1,T) for T # g is defined in (2.15).

Theorem 1.2. Let X be a compact 4-manifold with symplectic
form w. Fiz a class e € H?(X;Z). Given n € {0,...,d(e)}, fiz
classes [v1],... ,[ven] € Hi(X;Z)/ Torsion. There is a Baire set of
triples consisting of an w-compatible, almost complez structure J on
X, a set Q of d(e) —n distinct points in X and a set T = {v1,... ,7n}
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oriented, I1-dimensional submanifolds in X with each y; in the corre-
sponding equivalence class [y;]. Choose (J,Q,T') from this Baire set
and then H(e, J,Q,T') has finitely many elements. Furthermore, if h =
{(Crymi,Tk)} € H, then (2.13), (2.15) and Definition 3.2 define r(-)
in (1.11), and (2.14) defines o(h) in (1.11). Thus, q(h) is well defined
and so is GW(e)(¢) = >_ q(h). Then the following hold:

o GW(e)(¢) is independent of the chosen data (J,Q,T) from the
Baire set and depends only on e, ¢ and the symplectic form w up
to continuous deformations through symplectic forms.

o The assignment of GW(e)(¢) to ¢ extends as well defined homo-
morphism from A™(H,(X;Z)/ Torsion) to Z.

o GW(e)(1) = Gr(e), where the latter is described in Theorem 1.1.

o The resulting map GW : H*(X;Z) — A*(HY(X;Z) is naturally
equivariant under the action of Diff(X).

The proof of Theorem 1.2 is given at the end of Section 5.

2. The definition of r(C,1)

Let C' be a compact, connected, pseudo-holomorphic submanifold of
X. If C is non-degenerate in a technical sense which is defined below,
then

(2.1) r(C,1) = £1.

The purpose of this section is to explain how one determines the sign.
This task is accomplished in two steps.

Step 1. This step introduces a notion of nondegeneracy for a
connected, pseudo-holomorphic submanifold C'. A three part digression
is required for this purpose.

Part 1 of the digression defines a structure of a holomorphic vector
bundle on the normal bundle to C in X. To start the definition, remark
that metric g (as defined above) splits 7X along C as

(2.2) TX|c =TC @ N¢

with each summand being J-invariant. Here, N¢ is the normal bundle
to C in X.
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Since J|¢ preserves (2.2), the real 2-plane bundle N¢ can be thought
of as a complex line bundle over X. The latter will be denoted by N to
distinguish these two ways of viewing the normal bundle of X.

The bundle N inherits the structure of a holomorphic vector bundle
over C. The point here is that the Levi-Civita connection for the metric
g induces a connection on N¢ which decomposes T'(N¢) as p*(TCHN¢).
Here, p : No — C is the bundle projection. But, as remarked, the
almost complex structure J|c preserves the splitting in (1.4) and so its
pull-back to T(N¢) defines an almost complex structure, Jy, on T N¢
which is invariant under translations along the fiber and preserves the
connection splitting.

The almost complex structure Jg is integrable and so N¢ has the
structure of a complex manifold. This is to say that Jy gives the com-
plex line bundle N the structure of a holomorphic vector bundle over
the complex curve C. Note in particular, that the fibers of N are Jyp-
holomorphic lines in N.

Part 2 of the digression defines an exponential map of sorts with
which to pull the almost complex structure J from X back to a neigh-
borhood, U C Ng, of the zero section. In particular, the implicit func-
tion theorem (see, e.g. Lemmas 5.4 and 5.5 in [11]) can be used to
find a disk bundle U C N¢ together with a particularly nice embedding
¢ : U — X which enjoys the following properties:

(2.3)
1. ¢ maps the zero section as the identity on C.
2. The differential of ¢ along C is an isometry.

3. ¢ restricts to each fiber of U as a pseudo-holomorphic map. (Use
Jo to define the complex structure on the fibers of U.)

The map ¢ pulls back the almost complex structure J to U. This pull-
back will also be denoted by J.

Now U, as a subbundle of N¢, also inherits the complex structure
Jo. In general, Jy, differs from J. However, one can write

(2.4) J=J+T,

where T is a section over U of Hom(p*T¢, p*T N¢) which vanishes along
the zero section.
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Of particular interest here is the evaluation at the zero section of the
derivative of T along the fibers of U. The latter defines, via orthogonal
projections, sections v of T%1C and p of T%1C' ® N®2: To be precise
here, consider a local coordinate system about a point p € C. Let 2
be a local holomorphic parameter for C near p. Trivialize the complex
line bundle N near C and let n be the (complex) fiber coordinate. This
can be done so that the Jy version of T1%(N¢) is given by the span
of {dz,dn + a - n-dz}. Here, Z is the complex conjugate of z and a
is a complex valued function near p. With the preceding understood,
consider that the almost complex structure J on U defines a different
T10 the latter being the span of

(2.5) {dz+k-dz,dn + h - dz},

where k and h are complex valued functions on the restriction of D to
a fiber bundle over a neighborhood of p which vanish where 7 is zero.
Taylor’s theorem then writes h as

(2.6) h=(a+v)-n+p-7+0(nP):

The complex valued functions v and p are apriori defined on a neighbor-
hood of p in C, but they extend to the whole of C' as respective sections
of T%1C and of T1C @ N®2,

As a parenthetical remark, note that one can rightfully say that J is
integrable to the first order along C when p = 0 since this is a necessary
and sufficient condition for the torsion tensor of J to vanish along C.

Part 3 of the digression defines a differential operator D on the space
of sections over C of the real 2-plane bundle N¢. This operator sends
a section of N¢ to a section of the underlying real 2-plane bundle of
the complex bundle N ® T1°C. The operator D takes a section of N
(thought of as a section of N¢) and gives

(2.7) Ds = 0s + vs + i3,

thought of as a section of the underlying real bundle of N®T'°C. Here,
3 is the usual d-bar operator on sections of N, while 3 denotes the image
of s in N~! under the tautological C-anti-linear isomorphism between
N and N7L.

There are two important features of this operator D to keep fore-
most in mind: First, the operator D is canonically associated to the
pseudo-holomorphic submanifold C. Second, the operator D is an ellip-
tic operator. (It is evidently a zero‘th order perturbation of the standard
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d-bar operator.) In particular, the kernel and cokernel of D are both
finite dimensional vector spaces.

Remark that kernel of the operator D should be thought of as giv-
ing a sort of Zariski tangent space to the space of pseudo-holomorphic
embedding of C' in X as a point in the space of all smooth embeddings
of C into X.

Now, when Q@ C X is a discrete set of points, introduce
evg : C®(N) — (®peaN|p) to denote the evaluation map.

Definition 2.1. Let e € H%(X;Z) and if d = d(e) > 0, fix a
set 2 of d distinct points in X. Let C C X be a connected, pseudo-
holomorphic submanifold containing 2. If d = 0, call C' non-degenerate
when cokernel(D) = {0}. When d > 0, call C non-degenerate when the
operator

(2.8) D ®evg : C®°(N) — C®(N @ T"'C) @ (&pealNlp).-

has trivial cokernel.

Note that in the d > 0 case, the operator in (2.8) is Fredholm with
index zero, and further note that D has trivial cokernel if the operator
in (2.8) has trivial cokernel.

Step 2. Fix a set Q of d points in X. This step defines the sign
for 7(C,1) in (2.1) when C is a non-degenerate, connected, pseudo-
holomorphic submanifold of X which contains €.

The = sign for a given such C is formally the sign of the determinant
of the operator in (2.8). Formalities aside, the sign in question is defined
as follows: First, fix a smooth map 7 : [0,1] — C®(Hom(N;T%1(C))
which vanishes at ¢ = 0. Use 7; to denote the homorphism 7|;. Then,
for each t € [0, 1], define the operator D; to take a section s of N to

(2.9) Dis = (0s+ (v +m)s + t- u3,5(p1), ... 8(pa)),

which is a point in C®(N ® T%1C) @ (€peaN|p). Note that D, can be
interpreted in a natural way as an index zero, Fredholm operator. Thus,
its kernel and cokernel are finite dimensional with the same dimension.
Second, note that the ¢t = 0 operator Dy is C-linear. For a suitably
generic choice of 7y, both the kernel and cokernel of Dy will be empty.
With this understood, write

(2.10) sign(det(Do)) = +1.

Second, remark that for a suitably generic choice of 7 (a choice from
a certain Baire (in particular, dense) subset of the apropriate Frechet
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space of smooth maps), the set of ¢t for which D; has non-empty ker-
nel is finite; a set with some N > 0 elements. Also, at each such
t,dim(kernel(D;)) = 1 and a certain linear map

(2.11) M, : kernel(D;) — cokernel(D;)

is an isomorphism. This M; takes an element s € kernel(D;) and assigns
to it the projection into cokernel(D;) of

(2.12) M, = (%Th) s+ ps.

These assertions can be proved using basic properties of analytic per-
turbation theory from [3].

With the preceding understood, choose the map 7 from the afore-
mentioned generic set and define r(C, 1) (the sign of det(D)) for the
given C to equal

(2.13) sign(det(D)) = (-1)V.

Analytic perturbation theory (again from [3]) can be used to prove
that the sign in (2.13) is independent of the choice of the map 7 which
is used in its definition.

Now consider the definition of o(h) and r(Cy, mg, k) which appear
in (1.11). The definition of o(h) comes first. In this regard, remember
that I" is an ordered set which consists of 2n elements, {v1,... ,72n}.
Meanwhile, {T'x} partitions I. Agree to order the elements in each I'y
by increasing index. (For example, if the unordered set Ty = {vs,72},
then the ordering is {2,vs5}.) With each subset I'y ordered, reorder T’
by putting the ordered set 'y first, then I's, etc. This new ordering of
I differs from the original one by a permutation, =. Set

(2.14) o(h) =0 or 1 if 7 is even or odd, respectively.

Note that the fact that each T'; contains an even number of elements
insures that the definition of o(h) is insensitive to any relabeling of the
sets {Tx}.

Now turn to the definition of 7(Cj, mg, ['x). As remarked previously,
r(Ck, mg,8) is the same as r(Cy,m;) as defined in (2.13) in the case
my = 1, or else as defined in Definition 3.2 in the case where m; > 1.
Furthermore, the case my, > 1 arises only when C}, is a torus with trivial
normal bundle, and in this case dy = 0 so 'y = @¢. Thus, it is necessary
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to consider here only r(Ck,1,T'x) when 'y # 8. The definition here
requires three steps.

Step 1. If J is suitably generic, then the operator D for C has
kernel dimension dj and cokernel dimension 0. Furthermore, kernel(D)
is canonically oriented. (The orientation can be obtained by considering,
as previously, a continuous family, {D;}o<s<1 of deformations of D by
zero’'th order operators such that D; = D and such that Dy is complex
linear. Because dy > 1, the family can be chosen so that cokernel(D) =
{0} for each ¢. Since Dy is complex linear, its kernel inherits a natural
orientation, and then, by continuity, so does kernel(D).)

Step 2. Order the elements of I'y by increasing index. For the
sake of argument, suppose, after ordering, I'x = {v1,...,72p}. Each
7o can be perturbed slightly, if necessary, so that its intersection point
with C is unchanged, but so that its tangent space at this intersection
point is not a subline in the tangent space to C,. With this understood,
the tangent space to each v, at its intersection point with C} defines a
line in the normal bundle fiber. Let 1, denote the quotient of the said
normal bundle fiber by Ty,. Note that each I, is oriented (since both
T+, and the normal bundle are.) Then, V = @1<a<2ply is naturally
oriented, as an ordered direct sum of oriented lines.

Step 8. By assumption, Cj also contains a set Q' of dy — p points
of Q. For each point z € ', let N|,. denote the fiber of the normal
bundle at z. Then, the obvious evaluation map (at the points of Q' and
the intersection points of the elements in I’y with Cy) defines a linear
map H : kernel(D) = (®,ca N|;) @ (B1<a<zple). As will be argued in
Section 5, when (J,2,T") is chosen from Theorem 1.2’s Baire set, this
map will be an isomorphism between oriented vector spaces. Thus, its
determinant has a well defined sign. Set

(2.15) 7(Ck,1,Tk, ) = sign(det(H)).

3. The definition of r(C,m) when m > 1

The purpose of this section is to define 7(C,m) in (1.6) when m is
larger than 1. This definition is a four step affair.

Step 1. In the case m > 1, the sign of det(D) from (2.13) enters
also, but here it is only part of the story since r(-) in the case m > 1
is defined in terms of spectral data for D and also from twists of D
by the non-trivial, real line bundles over C. To set the stage for the
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details, assume, for the balance of this section, that C is an embedded,
pseudo-holomorphic torus in X with trivial normal bundle.

The four isomorphism classes of real line bundles on C are distin-
guished by their first Stieffel- Whitney classes in H'(C;Z/2). Thus,
given « € H(C;Z/2), let ¢, denote the corresponding real line bundle
whose first Stieffel-Whitney class is ¢. Let C*°(¢; N) denote the space of
sections of €, ® N¢. Then, D in (2.7) also can be viewed as an R-linear
operator on C®(i; N). The latter operator will be denoted as D,, with
D used solely to denote the operator in (2.7) for the original ¢ = 0 case.

Prior to defining r(-) it is necessary to establish certain spectral
properties of the {D,}. The key lemma is given below. The statement
of the lemma introduces the notion of a subvariety in an infinite di-
mensional Frechet space. For the purposes below, such a subset, D, is
a countable, disjoint union UD* of submanifolds with two properties:
First, for each k, D* has codimension k. Second, for each kg, the union
U kzkoDk is closed. (This definition is, perhaps, not standard as it
makes no reference to any analytic structure.)

Lemma 3.1. Let C be a complez torus and N be a complez, holo-
morphic line bundle over C. Given a pair (v,u) of sections of TH'1C
and TH'1C ® N®2, use (2.7) to define the R-linear operator D on the
space of sections of N. Given . € H(C;Z/2), define the operator D,
by (2.7) as an R-linear operator on the space of sections of ¢, ® N.

1. Consider the operator D, in (2.7) in the case p = 0. In this case,
the kernel of D, has real dimension either 0 or 2. Furthermore,
there is a codimension-2 submanifold Dy, C C®(C; T C) which
s characterized by the fact that when v € Dy, and D, is defined
from v and p = 0, then kernel(D,) # O.

2. Consider now the operator D, in (2.7) in the general case. Then
the kernel of D, has real dimension either 0, 1 or 2. And, there
is a real analytic subvariety D, C C®(C;T%'C & (T'%1C ® N®?))
with codimension 1 or greater strata that is characterized by the
fact that when (v,u) € D, and D, is defined from (v,p), then
kernel(D,) # @. Note from Part 1 that D, intersects the subspace
of pairs (v, ) with p = 0 in codimension 2. Finally, when ¢ # ¢,
then the intersection of D, with D) is a subvariety whose top strata
has codimension at least two.

3. The path components of D, are labeled by Z x Z and each path
component of D, intersects a path component of Dy,.
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Lemma 3.1 is proved in Section 5. The third assertion is not used
below.

Set D = U,D,. When (v, u) ¢ D, then Lemma 3.1 allows a definition
of sign(det(D,)) € {£1} as in (2.13) for each . € HY(C;Z/2). (Thus,
sign(det(D,)) counts the mod (2) spectral flow for the path of D, op-
erators along a generic path from (v, ) to any (11,0) & UDy,.) As ¢
ranges over the four elements in H'(C;Z/2), these four £1’s give a map

(3.1) §: HYC;Z/2) — Z)2.

Note that ¢ is not a homomorphism.

As remarked previously, an embedded, pseudo-holomorphic torus
C C X with trivial normal bundle has associated to it an operator D as
in (2.7) and, more generally, the full set of four operators {D,}. Thus,
a map § = é¢ as defined in (3.1) can be assigned to C when each {D,}
has trivial kernel.

Step 2. With the preceding understood, the function 7(-) will now
be described.

Definition 3.2. Let C C X be an embedded, pseudo-holomorphic
torus with topologically trivial normal bundle and the property that
each D, has kernel {0}. Define r(-) as follows:

1. If 6(¢) = 1 for all ¢, set 7(C,m) = 1.

2. If §(0) = 1 and 46(¢) = —1 for exactly one ¢, set r(C,1) = 1 and
r(C,m) =0 for m > 1.

3. If 6(0) = 1 and &(¢) = —1 for exactly two ¢, set 7(C,1) = 1 and
r(C,2k) = r(C,2k +1) = (=1)* for k& > 1.

4. If §(0) = 1 and 6(¢) = —1 for all other ¢, then set r(C,1) =1 and
r(C,2k) = r(C,2k + 1) = (=1)*2 for all k£ > 1.

5. If §(0) = —1 and 6(:) = 1 for all other ¢, set r(C,1) = —1 and
r(Cym) =0 for all m > 1.

6. If 6(0) = —1 and §(:) = —1 for exactly one other ¢, set r(C,1)
= —1and r(C,m) = (-1)™ for all m > 1.

7. If §(0) = —1 and §(.) = —1 for exactly two other ¢, set r(C,1)
= —1and r(C,m) = (—1)™2 for all m > 1.
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8. If 6(v) = —1 for all ¢, set 7(C,2k) = —r(C, 2k + 1) = 2k + 1 for all
k.

Here are two remarks concerning this definition: First, the value
of r(C,1) is equal to sign(det(D)) as required. Second, the value of
r(C,m) is, in general, the coefficient of 2™ in the power series expansion
around z = 0 for a certain analytic function P(C;z) of the variable z.
As P(C;z) depends only on the value of the map d¢, it proves useful
to introduce the power series Py, where Py = P(C;-) in the case
where the map ¢ for C sends the trivial element to 1 and otherwise
sends precisely k elements to -1. Likewise, P_; = P(C;-) in the case
where the map 6 for C sends the trivial element to -1 and precisely &
additional elements to -1 also. With the preceding understood, the eight
possibilities from Definition 3.2 are given by power series expansions
(about 0) for the following:

1
1. P =
+0(2) 1_2
2. Pu(z)=1+=z
_ 14z
3 P+2(Z) = 1+22
(1+ 2)(1 - 2?)
4. P =
(3.2) 5. Po(z)=1-2
1
6. P_ = .
1(2) 142
1+ 22
7. P_ = .
2(2) 142
2
8. P_3(2)= 1+2

4. The meaning of the term “admissable”

The purpose of this step is to make a precise statement about the
“admissable” set of almost complex structures on X and points {2 which
can be used to define #H for the sum in (1.7). For this purpose, it is nec-
essary for a digression to introduce a somewhat different generalization
of the operator D.
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To start the digression, let C be, again, a compex torus, and let
N be a topologically trivial, complex vector bundle over C. With a
positive integer m fixed, let P, denote the group of permutations of the
set {1,...,m}. Fix a homorphism p : m1(C) — Pn,. Via the obvious
representation of P, on &,R, the representation p naturally defines a
flat, real n-plane bundle V, — C. With this understood, the operator
D naturally extends to an R-linear operator (also called D) on the space
of sections of V, ® N.

Definition 4.1. Let C' C X be a pseudo-holomorphic subman-
ifold with genus one and topogically trivial normal bundle N. Fix a
positive integer n and say that C is n-non-degenerate when, for all
m € {1,...,n}, and for all representations p : 7 (C) — Py, the oper-
ator D on the space of sections of V,® N has trivial kernel. Equivalently:
C is n-nondegenerate if, for every holomorphic covering map f : ¢! = C
of degree n or less, the operator D’ on C", given by (2,7) with f%., f7, f;
replacing N, v, u respectively, has trivial kernel.

Here are three remarks concerning this definition: First, the notion
of 1-non-degeneracy is equivalent to that of non-degeneracy as given in
Definition 2.1. Second, if C is 2-non-degenerate, then each of the oper-
ators D, has trivial kernel. Third, the equivalence of the two definitions
will become apparent below.

End the digression.

To describe the set of admissable (J,Q) for the sum in (1.7) it
proves useful to introduce the space Ay of pairs (J,€), where J is an
w-compatible almost complex structures on TX, and 2 is a set of d
distinct points in X when d is positive, and otherwise, @ = @. This A,
has the structure of a smooth manifold which it inherits as a subspace
of the Frechet manifold C*°(End(T'X)) x Sym?(X).

Definition 4.2. A pair (J,Q) of w-compatible almost complex
structure and set @ C X of m > 0 distinct points will be called
admissable when the five points below hold for each e € H*(X;Z) for
which the number d (as defined in (1.3)) is no greater than m:

1. There are but finitely many connected pseudo-holomorphic sub-
manifolds with fundamental class Poincaré dual to e and contain-
ing d points of 2.

2. Each of the submanifolds in Point 1, above, is non-degenerate in
the sense of Definition 2.1.

833



834 CLIFFORD HENRY TAUBES

3. There are no connected, pseudo-holomorphic submanifolds with
fundamental class Poincaré dual to e and containing more than d
points of Q.

4. There is an open neighborhood of (J,Q) in A,, with the property
that each (J',’) in this neighborhood obeys Points 1-3, above;
and the number of J’-pseudo-holomorphic submanifolds in Point
1, above, is constant as (J’, Q') vary through this neighborhood.

5. Ife-e = e-c =0, then each pseudo-holomorphic submanifold in
Point 1 is n-non-degenerate for each positive integer n.

The following proposition asserts that admissable (J, 2) are generic.

Proposition 4.3. Fiz a class e € H*(X;Z) and introduce d as in
(1.3). Then, the set of admissable pairs (J,Q) in Ag is a Baire subset.
Furthermore, if (J,Q) is admissable, then the following hold:

1. The set He, J,Q) as defined by J and Q is a finite set.
2. Hie, J,Q = D) is empty when d < 0.

3. Bvery h = {(Cx,mi)} € H has the property that each Cy with
mg = 1 is non-degenerate in the sense of Definition 2.1, while each
Cr with mg > 1 is mp-non-degenerate in the sense of Definition

4.1.

4. If (J1,S0) is sufficiently close to (J,82), then the sets H(e,Q,J)
and H(e, 1, J1) have the same number of elements.

(A Baire set is the countable intersection of open and dense sets. In
particular, such a set is dense.)
This proposition is proved in Section 5.

‘5. The proofs

The purpose of this section is to provide the proofs of Lemma 3.1,
Proposition 4.3 and Theorem 1.1. These are taken in the preceding
order.

a) Proof of Lemma 3.1.
The proof of this lemma is a six step affair.
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Step 1. The purpose of this first step is to give a very concrete
realization of the operator D in (2.7) for the case, where C is a compex
torus, and N is topologically trivial. Before starting, it is convenient to
redefine the function v. The point is that by adding to or subtracting
from v and by making the complimentary change in the definition of
the operator 8, one can change the implicit holomorphic structure on
€, ® N to be the trivial one. With this change understood, one should
think of C as C/H where H C C is a lattice generated by 1 and 7 which
has positive imaginary part. Use z = t; + ¢ - t5 for the coordinate on C
so that 9 = Lya + zi) in (2.7). Now, the complex valued 1-form

2\ ot Oty
dt, + i - dt, defines a holomorphic trivialization of T%:°C.

With ¢, ® N and T'°C holomorphically triviallized, v and g in
(2.7) become complex valued functions on C. And, the operator D, in
(2.7) can be viewed as an R-linear, differential operator on the space of
complex valued functions on C. This very concrete view of D, will be
invoked on occasion, below.

Note, by the way, that this device of redefining v puts all of the D, in
a similar form, and with this understood, the subsequent discussion will
drop the subscript ¢ and use D to denote any of the four possibilities.

Step 2. The operator D in the = 0 case defines a J operator on the
topologically trivial complex bundle over C. The kernel of D in this case
consists of the holomorphic sections. Since the bundle is topologically
trivial, a holomorphic section is non-vanishing. Thus, there is, at most,
a complex 1-dimensional subspace of holomorphic sections.

Now, suppose that Dn = 0 with n # 0. Since 7 is nowhere zero, 7
defines a smooth map from C to C — {0}. Conversely, take a smooth
map 1 : C — C—{0}, set v = —n~19n. With this choice for v to use in
D, one has Dn = 0. This last construction identifies Dy with the space
Maps (C; C— {0})/C*, where C* is the multiplicative group of non-zero,
complex numbers (i.e., the constant maps from C to C — {0}). With
the preceding understood, the components of Dy are seen to be in 1-1
correspondence with the homotopy classes of maps from C to C — {0}.
(The latter is classified by H1(C;Z) = Z & Z).

Now, Hodge theory asserts, in general, that v can be written
(5.1) v = a+ Ou,

where « is a constant, and u is a smooth function on C. One thus sees
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that (5.1) has the form —v~18v if and only if

1
(5.2) a=ir-(n1 + Im(T)( ni - Re(7) + n2)),
where n; and ny are integers. This last observation establishes the first
assertion of the lemma.
Step 8. This step proves the following lemma which is of general
use later on.

Lemma 5.1. Let C be a complex torus and let (v,u) be a pair of
complex valued functions on C. Use (2.7) to define the R-linear operator
D on the space of complex valued functions on C. If n obeys Dn = 0,
then n is nowhere zero.

Proof of Lemma 5.1. Aronszajn’s unique continuation theorem [1]
asserts that n vanishes to finite order at any one of its zeros. Then, a
Taylor’s expansion near a putative zero shows that 7 vanishes holomor-
phically. That is, n = a - 2P + O(|z[P™!) for some integer p, non-zero
constant a and local holomorphic coordinate z. This last fact implies
that the zeros of n count only with positive signs in a computation of
the Euler characteristic of the trivial bundle. Hence, 7 is nowhere zero.

Step 4. The observation here is that the claim in Assertion 2 about
the dimension of the kernel of D follows directly from Lemma 5.1.

Step 5. This step considers the structure of D = D,. To begin,
suppose that kernel(D) # {0} for a given pair (v, u). Analytic pertur-
bation theory can be used to describe D in a neighborhood of (v, 4) as
follows: There is a ball, B, about (v, g) in x2C*(C;C) and a real ana-
lytic map F from B into Hom(kernel(D), cokernel(D)) with the property
that F~1(0) = D N B. Thus, D is a real analytic variety near (v, ).

To determine the codimension of D, consider that the differential
of the map F at (v,u) sends a pair (vq,u;) to the homomorphism
which takes n € kernel(D) and gives the L?— orthogonal projection
onto cokernel(D) of v1 - 7+ p1 - 7. The claim is that this differential is
not zero. Indeed, take non-zero n € kernel(D) and 6 € cokernel(D) to
make (v; = On, 1 = 0) which is not annihilated by the differential of
F.

The fact that F’s differential is not zero implies the assertion that
the strata of D, all have codimension 1 or more. (The preceding implies
that where kernel(D) has dimension-1, the variety D, is a codimension-1
submanifold.)
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The assertion about the structure of D, D, follows from the general
form of F' above. The details are left to the reader.

Step 6. This step proves Part 3 of Lemma 3.1. To begin, remark
that the association of non-zero s € kernel(D) to the homotopy class
of s (as a map from C into C — {0}) defines a locally constant map
from D into Z x Z. (Note that where D has 2-dimensional kernel, any
two elements of said kernel are either proportional or everywhere linearly
independent. In particular, they define the same homotopy class of map
in to C—{0}.) Conversely, given a complex valued function y on C and
a smooth map s from C' into C— {0}, set v = —s~18s— s~ 15 and then
define D using (v, ). This D annihilates s. Thus, the afore-mentioned
locally constant map to Z x Z is onto.

With the help of the preceding construction, one can also see that
each point in D is connected to a point in Dy by a path in D. For
example, the path for (v,u) as above is parameterized by r € [0,1]
where p, = 7-p and v, = —s710s — - s7'u5 . (Note that this does
not define a retract of D onto Maps(C;C — {0})/R* because a given D
may have a 2-dimensional kernel.) At any rate, the existence of paths
as above demonstrates that the components of D are, as claimed, in 1-1
correspondence with the set of pairs of integers.

b) Proof of Proposition 4.3, Part 1.

The proof of Proposition 4.3 (and Theorem 1.1) depends critically
on results from Section 5 of [7], which describe the local structure, and
also the compactness properties of certain relevant spaces of connected,
pseudo-holomorphic submanifolds. Part 1 of the proof of Proposition
4.3 summarizes these results as Proposition 5.2, below. Part 2 completes
the argument.

As remarked, the purpose of this step is to state and prove Proposi-
tion 5.2, below. The statement of Proposition 5.2 requires the following
four part digression.

For Part 1 of this digression, suppose that 3 is a compact, ori-
ented, connected, 2-dimensional surface. Fix e € H?(X;Z). Let w be
a symplectic form on X and let J be an w-compatible, almost complex
structure on X. Also, introduce d as in (1.3), and if d > 0, let 2 be a set
of d distinct, but unlabeled points in X. Introduce X(J,?) to denote
the set of pseudo-holomorphic submanifolds in X which are (abstractly)
diffeomorphic to 33, contain the set €2, and have fundamental class that
is Poincaré dual to e. Note that this set is empty unless the genus g of 2
is given by the adjunction formula (1.2). End Part 1 of the digression.
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Part 2 of the digression introduces the notion of a multiply toroidal
class e € H%(X;Z). A class e is multiply toroidal when all of the
following three conditions hold:

1. e-e=0.
(5.3) 2. e-c=0.
3. e is divisible.

End Part 2 of the digression.

For Part 3 of the digression, let .4 denote the Frechet manifold of
w-compatible, almost complex structures on X. (This is a submanifold
in the space of smooth sections of End(7°X).) When d is positive, let
X, denote the space of d-tuples of distinct (but unlabeled) points in X
(a smooth manifold). When d < 0, set Xy = @. In either case, set
Ag = A x Xd.

For Part 4 of the digression, consider a smooth, 1-parameter family,
{w : t € [0,1]}, of symplectic forms on X. Let A; denote the set of
triples (t,J,w), where t € [0,1], J is an ws-compatible symplectic form
on X, and () is as before. Note that A, is a smooth, Frechet manifold
which fibers over [0, 1] via the tautological projection.

End the digression.

Proposition 5.2. Fiz a class e € H*(X;Z) and, ife-e=0=c-e,
choose a positive integer n. There is an open and dense set U C Ay
with the following property: When (J,Q) is chosen from U, then

1. K(J,Q) is a finite collection of points, and each point in question
1s non-degenerate in the sense of Definition 2.1. Furthermore, if
e-e=0=c-e, then each point in K(J,Q) is n-non- degenerate
in the sense of Definition 4.1.

2. There is an open neighborhood of (J,Q) in Ay, with the property
that each (J', ) in this neighborhood obeys Assertion 1, and its
K(J', ) has the same number of points as K(J, ).

3. Suppose that {w : t € [0,1]} is a smooth, I-parameter family of
symplectic forms. Then, a point in U (as defined by wy) can be
joined by a section 7y :[0,1] — A, to a point in U (as defined by
w1 ) with the property that the fibered product,

(5.4) Xy ={(t,8) : t€[0,1] and & € K(y(t))}
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has the structure of an oriented, I1-manifold. Furthermore, this
manifold is compact when e is not multiply toroidal.

Proof of Proposition §.2. This proposition is essentially proved in
Section 5 of [7]. (As remarked in the Introduction, there is an oversight
in Section 6 of [7], but this does not effect the proof of Proposition 5.2.)

Briefly, the proof (borrowed mostly from [7]) of Proposition 5.2 pro-
ceeds by setting up a univeral model for K(-) and certain analogous
spaces of pseudo-holomorphic varieties. The argument then exploits
the Fredholm properties of D in conjunction with the Sard-Smale the-
orem [9] and the Gromov compactness theorem (see (2], [6] and [15]
and [5]) to rule out unwanted behavior for generic pairs (J,2). What
follows is a brief eight step description of the universal model and its
application. There is also an addendum at the end.

Step 1. Fix a class e € H*(X;Z). Let £ be any compact, oriented,
connected surface. Introduce the space M of smooth maps from ¥ to
X which push-forward the fundamental class of ¥ as the Poincaré dual
of e and which are embeddings off of a finite set of points. Note that
the group Diff(¥) of orientation preserving diffeomorphisms of ¥ acts
freely on M.

Step 2. Let J denote the space of almost complex structures on ¥
(compatible with its orientation). Think of J as a Frechet submanifold
of the space of smooth endomorphisms of 7%. The group Diff(¥) also
acts on J and the quotient is the moduli space of complex structures
on ¥. The latter has a natural structure of a complex analytic variety.
In particular, J/ Diff (¥) is stratified; that is, it is the disjoint union of
complex analytic manifolds,

(55) j/Diff(E)=LOUL1U... ,

where Ly is a smooth manifold of dimension 6g—6+¢—2k, where ¢ is the
genus of ¥ and where € = 6,2 or 0 depending on whether ¢ =0, g =1,
or g > 1. Use Jr C J to denote the subspace which projects to Ly.
(The membership of a complex structure in a component of a strata of
(5.5) is determined by the conjugacy class of the group of holomorphic
diffeomorphisms. For example, if g > 0, the generic complex structure
admits only the identity diffeomorphism in this group; and if g = 0, the
generic complex structure admits only the torus of translations.)

Step 3. A universal model consists of the space of Diff(¥) or-
bits of data ([(2), (v),J, ], J, (z)) where (2) = (21,... ,2m) and (y) =
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(y1,--. ,yp) are sets of unordered, distinct points in 3. Meanwhile,
(z) = (z1,... ,Zm) is a set of unordered, distinct points in X. Also,
j € Ji for some k, while ¢ € M and J € Ap. This data set is con-
strained by the following requirements:

1. @) = Jg,.

2. The differential of ¢ vanishes at each y.

3. go(zk) = Tf.

4. ¢ 'is an embedding off of a finite set of points.

(5.6)

Step 4. Using the fact that D in (2.7) is elliptic, the arguments in
Chapters 3.2 and 6.1 in [5] can be generalized in a rather straightforward
manner to prove that the space of Diff(¥) orbits of such data sets is a
smooth manifold for which the tautological map to A, has everywhere
Fredholm differential.

The following paragraphs constitute a brief outline of the argu-
ment: The discussion starts with new notation. Introduce the “uni-
versal space” Z = (™ x ¥P x Ji X M)/ Diff(X) x A;. Next, consider
three fiber bundles over Z. The first is the vector bundle W; its fiber
depends only on the triple (j,¢,J) and is the space of sections over
% of the bundle TO'E @ ¢*(T10X). Here, T®'% is defined using j,
and Ty X is defined using J. The second bundle is the vector bundle
Vp; in this case, the fiber depends only on the data ((y), 7, ¢, J); it is
Sp[(TT'L ® (¢*(T1,0X))y,]. The third fiber bundle is the trivial fiber
bundle W,, = X, x Z.

With the proceding understood, consider that lines 1-3 of (5.6)
can be interpreted as defining a section, s, over z of the fiber bundle
(WeV,) & Wpy,. And, the space of solutions to the constraints in (5.6)
constitute the set of points in Z for which the section s intersects a
certain tautological section sy. The latter is the section which sends
(=), @), 5, ), 7, (2)) to (0,0, (z)).

The claim now is that the differential of s is surjective at points
where s = s9. The proof of this claim is left as an exercise (see Sections
3.2 and 6.1 of [5]) except for the following explanatory remarks. First, to
be technically precise, one should choose some Sobolev space or Holder
space completions of Z, that is, of M and Ay and J, and so work with
infinite dimensional Banach manifolds. This formality is explained in
the aforementioned sections of [5], and will receive no further mention
save for one further technical remark below. Second, one should consider
Z as a fiber bundle over the manifold Ly. When this is done, the
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arguments are similar to those in Chapters 3.2 and 6.1 of [5] which
treat the genus 0 case where the corresponding Ly, is a point. Indeed, as
in [5], one finds that the differential of s along M, thought of as a factor
in the fiber of this bundle over Ly, is surjective except for what is, at
most, a finite dimensional vector space. This is because the equations
for a map to be pseudo-holomorphic have elliptic and hence Fredholm
linearization. Then, variations along 4y and X, map onto this last
finite dimensional piece of the range. In fact, variations along L; are
not needed when considering the surjectivity of this differential; and
this makes the argument even closer to that in [5].

Given that the set Zy = {s = s¢} C Z is a smooth manifold, one can
then consider the induced map from Zj to A,,. It is a consequence of the
Sard-Smale theorem [9] (see the technical remark at the end of this step)
that the regular values of this map to 4,, form a Baire set. (Remember
that Baire sets are dense.) Meanwhile, the inverse image of a regular
value is a smooth manifold whose dimension is equal to the index of
the differential of the map to .A,,. That the map to A,, is Fredholm
follows as a direct consequence of the fact that the linearization of the
condition for pseudo-holomorphicity is Fredholm.

These last points imply that K(J, @) is empty for generic J when
d < 0, and that K(J,Q) is a smooth 0-dimensional manifold for generic
(J,92) when d > 0. Here, the term generic means chosen from a Baire
set of regular values of a map whose differential is everywhere Fredholm
with index -2 or less. These arguments use the p = 0 and M = D
versions of (5.6).

Note that the definition of the term regular value yields the following:
When (J,) is a regular value for the map to A, then each point in
K(J,§) parametrizes a submanifold which is non- degenerate in the
sense of Definition 2.1.

Similar arguments with the m > d versions of (5.6) find a Baire set
(the regular values of a map whose differential is Fredholm with index
< —2) of pairs (J, ;) € Ay, with no pseudo-holomorphic maps from
into X, which push-forward [Z] as the Poincaré dual to e and hit all the
points in ;.

Likewise, arguments with the p # 0 versions of (5.6) find a simi-
lar Baire set of (J,€2) where no complex structures on ¥ have pseudo-
holomorphic maps into X, which push the fundamental class forward as
the Poincaré dual to e, hit all points in €, and embed the compliment
of a finite set, yet do not embed all of X.

Here is a technical remark which concerns the preceding discussions:
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Recourse to the Sard-Smale theorem for maps between the Frechet
manifolds used here requires a detour to introduce a certain countable,
nested sequence of separable Hilbert manifold thickenings of the spaces
involved. These Hilbert manifolds are modeled on Sobolev spaces of
functions whose derivatives to some fixed order are square integrable.
The order here increases without bound, and gives the indexing for the
sequence. The asserted existence of a Baire set for the smooth model
(that is, Ag) follows from the existence of an analogous open and dense
set for a certain subset in each of the Hilbert manifold thickenings.
(Note that each X(J, ) from the Sobolev space version of 2 is locally
compact and thus can be exhausted by compact sets. That is, the pro-
jection from Zj to A,, in the Sobolev space version is a proper map.
Note also that the countable intersection of Baire sets is still Baire.)
The use of a sequence of Sobolev space thickenings of Zj to find a Baire
set in the smooth version of A,, of regular values is described in Chap-
ter 3.2 of [5]. Similar arguments which use the Sard-Smale theorem on
a countable set of Sobolev space versions of Z; are used below to find
other Baire subsets of the smooth version of A,,. In these subsequent
discussions, the technical detour through a sequence of Sobolev space
thickenings will be left implicit.

Step 5.  This step considers sequences {(Cp, (Jm,2m))}, where
{(Jm,m)} converges to (J,§), and Cy, for each m is a point in
K(Jm,m). The goal here is to prove that when (J,) is chosen from
the appropriate Baire set, then there must be a subsequence of {Cp}
which converges to a J-pseudo-holomorphic submanifold C' whose fun-
damental class is Poincaré dual to e. With this last assertion proved,
then Assertions 1 and 2 of Proposition 5.2 follows by a straightforward
argument. (This argument invokes a fairly standard application of the
implicit function theorem to prove the following: If a point C € K(J,?)
is non-degenerate (as in Definition 2.1), then whenever (Ji, ;) is suffi-
cently close to (J, §2), there is a unique C; € K(J1, 1) which is close to
C. (And, C; is also non-degenerate.))

With the preceding understood, then the issue is the behavior of a
sequence {Cp,} of Jp-pseudo-holomorphic submanifolds, which has no
subsequence that converges to a submanifold. The principle tool for
studying the properties of such a sequence is the Gromov compactness
theorem [2] as described [6] and [15] (see also [5]). This compactness
theorem details the sorts of limits which can arise. It turns out that
each of these limits can be described by some version or other of (5.6).
And, except when e is multiply toroidal, all of the versions of (5.6)
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which arise via the Gromov compactness theorem have the property
that the index of the relevant map to the relevant A, is at most -2. This
implies that there is a Baire set of choices for (J, ) for which no possible
Gromov limit exists. For such (J, ), all sequences {(Crm, (Jm, 2m)}, as
described above, have convergent subsequences; and Assertions 1 and 2
of Proposition 5.2 follow as described, at least when e is a non-multiply
toroidal classes.

In the case where e is multiply toroidal, the argument for Assertions
1 and 2 is more complicated; see the next step of the proof.

Here is a four part argument to prove the assertion above about the
index for the universal models which come via the Gromov compactness
theorem.

Part 1. From a sequence {(Cpm, (Jm,Un)} with {(Jm,Qm)} con-
verging to (J,?), the Gromov compactness theorem gives a finite set of
data {(¢x, g, mk)}, where £ is a connected, complex curve, @i is a
J-pseudo-holomorpic map from X, into X which is an embedding off
of a finite set of points, and where my is a positive integer. This data
is further constrained: First, Xy, N Xy, is finite if k1 # kp. Second,
let e; denote the Poincaré dual to the ¢g-push forward of [E]. Then
e = Ipmyieg. Third, Uy ¢ (Xg) is connected and contains 2. Fourth,
[w] - ex > 0 with [w] the class of w.

Part 2. Now, introduce the integer d for e as given in (1.3), and
introduce the analogous integer dj for each eg. The first point to make
is that the arguments of Step 4, above, can be repeated to show that
when (J, Q) is chosen from an appropriate Baire set, then each dy can
be assumed non-negative. Furthermore, one can choose the Baire set to
insure that the inequality X dy > d is satisfied. (The d points of  have
to be contained in the ¢g-images of the curves ¥, and the arguments
from Step 4 show that if (J, ) is suitably generic, each point of {2 is in
the image of unique ¢, and furthermore, ¢, (2x) can not contain more
than dj such points.) In both these cases, the Baire sets in question
consists of the regular values of a map whose linearization is everywhere
Fredholm with index -2 or less.

Part 3. This part asserts that if (J, Q) is chosen from the appro-
priate Baire set, then ¥ dy < d, unless either

1. {Cn} has a subsequence which converges to a J-pseudo-holmorphic
submanifold C with fundamental class Poincaré dual to e; or

2. e is multiply toroidal and the data given by the Gromov compact-
ness theorem consists solely of one triple (¢1, X1,m1). In addition,
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31 is a torus, 1 embeds X1,m; >1 and e = mje;.

(This Baire set consists, again, of the regular values of a map whose
differential is everywhere Fredholm with index -2 or less.)

Part 4. This last part proves the assertion in Part 3. For this pur-
pose, it is useful to label the set {ex} so that the classes with negative
square are given as {e1,... ,ep}. By arguments such as those in Step 4,
one can prove that when (J,Q) is chosen from a certain Baire set (as
will be assumed from now on), then each e; for £ < p has square -1, the
corresponding ¥ is a 2-sphere, and the corresponding ¢y is an embed-
ding whose image is regular in the sense of Definition 2.1. Since distinct
pseudo-holomorphic submanifolds intersect with only locally positive
intersection number [4], it follows that the set {ei,...,e,} consists of
distinct classes. Furthermore, either each has non-negative cup product
pairing with e, or p = 1 and e = e;. This is because for all m suffi-
ciently large, each such class is Poincaré dual to the fundamental class
of a J,~-pseudo-holomorphic submanifold, and so is e, by assumption.
If e = e;, the argument is finished, so assume below that this is not the
case. ‘

With e given as Xxmgex, compute the integer d as in (1.3) in terms
of the analogous integers dj, for the classes ey with non-negative square.
(That is, with & > p.) Here is the result:

1
d =Xgmydy + 55ksp mk(me — 1)(ex - ex)

+ Ekl Sko>p Tk Tk (ek1 : ekz)

(5.7) + Xk, >pka<p Tk M, (e, - ekz)
+ Ekl <ks<p TNk, MMk, (ekl ) ekz)
1

— 521030 mk(mk_l).

Notice that the first three terms are non-negative when (J,2) comes
from the appropriate Baire set. Indeed, the Baire set condition insures
that all dx > 0 (by arguments such as those from Step 4). Meanwhile,
the second term is non-negative by assumption, and the third term is
non-negative because of the local positivity of the intersection of pseudo-
holomorphic curves (see [4]). Infact, the only term which is not evidently
non-negative is the final term. However, because e for £ < p has non-
negative intersection with e, it follows that the sum of the final three
terms in (5.7) is no smaller than £Xg<pmi(mis1).
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This implies that d is strictly larger than ¥, dy unless the following
are true:

1. All e have non-negative square; that is p = 0.
2. mi =1 unless di =0 and e - e, = 0.
3. If k1 > ko, then €k, - €k, = 0.

Since U @ (Zk) is connected, and pseudo-holomorphic curves intersect
locally positively, this last conclusion implies that either
d > Yg>p di; or else one of the two possibilities claimed in Part 3 holds.
(That is, there is just an e;; and e; = e unless e is multiply toroidal, in
which case e is a multiple of e;.)

Step 6.  The discussion in Step 5 proves Assertions 1 and 2 of
Proposition 5.2 when e is not multiply toroidal. Now consider the case
where e is multiply toroidal. Here, the preceding arguments and a
careful analysis of the Gromov compactness theorem lead to Lemma
5.3, below. The statement of the lemma requires a brief, preliminary
digression. To start the digression, reintroduce the flat vector bundle V,
over C as described in Section 3. Here, p is a representation of 7y (C) =
Z & Z onto the permutation group of the set {1,... ,n} for some n. For
the purposes of the lemma below, remark that 71 (C) acts naturally on
V, by permuting the R factors according to the representation p. (In
this regard, remember that p is abelian.)

As remarked in Section 3, the operator D extends naturally to an
R-linear operator on the space of sections of V, ® C. Note that D
commutes with the action via p of Z ® Z on V, ® C, and thus there is
an action of Z @ Z on the kernel and also the cokernel of D. With this
understood, when s € kernel(D), introduce O, C kernel(D) to denote
the subspace which is spanned by the s and its translates under the
Z & Z action. Similarly, define O; when s € cokernel(D).

Lemma 5.3. Suppose e € H?(X;Z) is a multiply toroidal class.
There is o dense, open set Uy C Ay with the property that when J
comes from Uy, then the following hold:

1. Each point in K(J, D) is non-degenerate in the sense of Definition
2.1.

2. If K(J,Q) is not a finite set, or, if there ezist pairs (wy,J1) of
symplectic form wi and wy-compatible complezx structure Ji arbi-
trarily close to (w,J) with a different size K(-), then the following
is true: First, write e = n-e; for some integer n > 1. Then, there
is a pair of positive integers (q,p) with ¢ < n and p > 1 which
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are such that gp divides n; and there is an embedded, J-pseudo-
holomorphic torus whose fundamental class is Poincaré dual to
q - e1 and which is not p-non-degenerate in the sense of Definition

4.1.

3. To be more precise, under the preceding assumptions, there ezists
a representation p of Z @ Z into P, which acts transitively on
{1,...,p}; and there is a non-zero section s of the corresponding
Vo, ® C which is annihilated by D. Furthermore, when p > 2, then
the subspace Os has dimension at least 2. And, when p = 2, then
s s not a fized point of the Z & Z action on kernel(D).

Thus, the multiply toroidal case of Proposition 5.2 follows from
Lemma 5.3 plus

Lemma 5.4. Let X be a compact, oriented, 4-manifold with sym-
plectic form w. Let e € H*(X;Z) obey the first two conditions in (5.3),
and let n be a positive integer. There is an open and dense subset of
smooth, w-compatible almost complex structures J on X with the fol-
lowing property: Every embedded, pseudo-holomorphic torus whose fun-
damental class is Poincaré dual to e is n-non-degenerate in the sense of
Definition 4.1.

These two lemmas are proved in Step 8, below.
Step 7. The final statement of Proposition 5.2 is also a consequence
of the following:

1. The Smale-Sard theorem.

2. In the case where e is not multiply toroidal, the upper bound of -2
for the index of the differential of the tautological maps to A,, from
all auxilliary universal models given by the Gromov compactness
theorem.

One version of the argument proceeds as follows: Generalize the uni-
versal model in (5.6) to consist of the Diff(X) orbits of points
([(2), (¥), 3, ¢, (t, J, (z))) where (¢, J,(z)) € A,,. This generalized model
(call it Y) is also a smooth manifold for which the tautological map to
Ay, has everywhere Fredholm differential.

Let P denote the Frechet space of smooth sections over A, with the
property that at ¢t = 0 and 1, the section reproduces the given points in
the relevant versions of Y. Then, evaluation at time t gives a smooth
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map ev : [0,1] X P — A,» which one can prove is transversal to the
tautological map from ).

Thus, the fibered product over An, of [0,1] X P (using ev) and Y
(using the tautological map) is a smooth manifold whose tautological
map to P has everywhere Fredholm linearization. (The fibered product
sits in [0,1] x P x ) as the set of (t,p) € [0,1] x P and y € Y which
are mapped (by ev and the tautological map) to the same point in
Am.) One now invokes the Sard-Smale theorem for this map from the
fibered product to P to obtain Assertion 3. The compactness part of
this assertion, for the case where e is not multiply toroidal, follows with
the help of the Gromov compactness theorem in the manner described in
Step 5 above. All non-compactness is described by auxilliary models for
which the resulting map from the fibered product to P has differential
with index -1.

Step 8. This step proves Lemmas 5.3 and 5.4.

Proof of Lemma 5.3. If the assumptions of Assertion 2 hold, then
one can conclude from the discussion in Section 5 of [7] (or repeat,
with minor changes, Step 5) that there exists a sequence {(wm, Jm)}
of symplectic forms w,, and w;,-compatible, almost complex structures
Jm which converge to (w,J), and there is a corresponding sequence
pairs (Cp,¥m), where Cp, is a Jp-complex torus, and ¥y, is a Jp,-
pseudo-holomorphic embedding of C,, into X, which pushes forward
the fundamental class of C,, as the Poincaré dual of e. Assume the
existence of such a sequence.

The analysis [6] or [15] with a virtual repeat of arguments from Step
5 finds a certain Baire subset of .4y, which consists of the regular values
of a map whose linearization is a Fredholm operator with index-2 or less,
with the property that when J comes from this set, then the following
hold:

1. There is a positive integer ¢ < n, a complex torus C' and a J-
holomorphic embedding, 1, of C into X which pushes the funda-
mental class of the torus forward as the Poincaré dual of q - e;.
Furthermore, if (J, Q) are chosen from the appropiate open, dense
set, then ¥(C) can be assumed non-degenerate in the sense of
Definition 2.1.

2. The sequence {Cp,, ¥m} converges to a pair of complex torus C’
and pseudo-holomorphic map ¥’ : C' — X, where ¢/ factors
as ¥ o f with f : C' — C being an n/g¢-sheeted, holomorphic
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covering map.

Note that each Cy, is diffeomorphic to C’, only the complex structure
changes with m. With this understood, the convergence here for {¢,}
is in the C*-topology on the space of smooth maps from the torus C’
into X.

Now, identify C' with its image in X, and introduce the disk bundle
U in the normal bundle of C, with its embedding into X as described
in (2.3). For large m, each %, must map into the image of the disk
bundle U via the map ¢ of (2.3), and thus can be considered as a map
into U. By dilating each 4, by an appropriate m-dependent factor,
one defines a second sequence of maps, {1 : Cp, — N¢} with the
property that the farthest point from C in the image of the dilated Cy,
has distance 1 from C. The compactness theorem from Gromov [2],
[6], [15], can then be invoked to prove that the sequence {¢1,,,} has an
infinite subsequence which converges to give a pseudo-holomorphic map
1o : C' —> N¢. Here, pseudo-holomorphic is defined with respect to
the almost complex structure in (2.5), where £ = 0, and A is given by
the first two terms only on the right side of (2.6).

Here are some useful observations concerning #y: First, the image of
1y does not intersect the zero section. Indeed, 1y cannot factor through
the zero section as there is at least one point in its image with distance
1 from the zero section. If the image of 9y were to intersect the zero
section, then all {¢,,} would as well. But, the latter is outlawed by
(5.3.1). Second, 4 is a covering map onto its image. This is because
the projection from Ng to C is pseudo- holomorphic for the almost
complex structure in (2.5) where £ = 0. Third, let Cy C N denote
the image of 9. As the projection from N¢ to C induces a covering
map from Cj to C, it follows that the intersection of Cy with any two
fibers of N¢ have the same number of points, which is the degree of the
covering map from Cy to C.

With the third point above understood, let z be any point in C.
Then there is a neighborhood V' C C of z over which Cj is given by the
image of a set (s1,...,sp) of some p < n sections of N¢, where each is
annihilated by the operator D. Here, p is the degree of the projection
induced map from Cy to C. As z varies over C, these p sections define
a non-trivial element, s, in the kernel of the extension of D to some
V, ® N for some representation p as described in Definition 4.1.

Next, note that p = 1 is not allowed, for in this case, the torus C
would be degenerate (as in Definition 2.1). As remarked above, when
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(J,9Q) are chosen from an appropriate dense, open set, one can assume
that C is not degenerate. For the same reason, one can assume that the
Z & Z action on kernel(D) does not fix s. It follows from the definition of
p that Z @ Z acts transitively on the set {1,... ,p}, as Cy is connected.
The definition of p also requires that O; have dimension 2 or more when
p>2.

Proof of Lemma 5.4. First of all, the case n = 1 follows from previ-
ous arguments. Now, if a square zero, embedded, pseudo-holomorphic
torus C' is non-degenerate in the sense of Definition 2.1, then whenever
J1 is sufficiently close to J, there will be a nearby J; pseudo-holomorphic
torus for any sufficiently small perturbation of the given J. A corrected
version of the argument in the final paragraph of Section 7b in [11]
shows the following: Given C' as above, there are arbitrarily small per-
turbations of J which produce nearby pseudo-holomorphic tori which
are n-non-degenerate for any given n. As noted, the argument in the
final paragraph of Section 7b in [11] is incorrect. To correct the argu-
ment, allow ¢ to very in R. Then M; has real analytic dependence on
t, and so its determinant either vanishes for all ¢, or only on a discrete
set of ¢.

Given these last facts, the lemma now follows from the following
observations:

1. K(J,9) is, in all cases, locally compact.

(5.8) 2. If D has no kernel on a given V), for given (v, i),
- then there is a C° open neighborhood of (v, i)

where the corresponding D also has no kernel.

Note that Lemma 5.4 follows readily from Lemmas 5.12 and 5.13, below.
The arguments given below for these lemmas are fundamentally different
from that just given.

Addendum. There are only three issues in the preceding proof that
do not come, more or less, from Section 5 of [7]. The first concerns the
expicit focus here on embeddings of ¥ into X. This focus is justified
by the extra observation that there is a universal model as in (5.6),
which has p # 0, for non-embedded pseudo-holomorphic maps, and
that for these universal models, -2 is an upper bound to the index of
the differential of the tautological map to Az, With this understood,
the Sard-Smale theorem implies that the appearance of non-embedded
pseudo-holomorphic maps in K(+) as (J,Q) vary is a codimension-two
phenomena.
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The second issue from Proposition 5.2 which is not covered in [7]
is Lemma 5.4 which facilitates the arguments for the multiply toroidal
cases.

The third issue concerns the fact that the set ¢ in Proposition 5.2
is dense and open rather than just Baire. This conclusion can be drawn
from the following facts: First, the moduli spaces of pseudo-holomorphic
maps are locally compact. Second, one can invoke the Gromov compact-
ness theorem to conclude that only finitely many such spaces need be
considered when studying either of the following two cases:

1. The possible behavior of sequences in any given K(J, 2).

2. The behavior of sequences whose k’th element is chosen from the
k’th element of a sequence of spaces {K(Jm,2m)} where the se-
quence {(Jp,, )} is constrained to converge to a given (J, 2).

Third, as (v, ) and the complex structure on the surface ¥ vary, the
condition that the operator in (2.8) be surjective defines an open set in
this parameter space.

c¢) Proof of Proposition 4.3, Part 2

This step completes the proof of Proposition 4.3. First of all, the
assertion that the set of admissable (J,2) is Baire is an immediate
consequence of Proposition 5.2. (The countable intersection of open
and dense or Baire sets is itself Baire.)

Assertions 2 and 3 of Proposition 5.2 follow from the fact that the
set admissable (2, J) is Baire. Thus, it only remains to prove Asser-
tion 1. And, this assertion follows from Lemma 5.5, below, using the
aforementioned fact that the set of admissable (£, J) is Baire.

Lemma 5.5. Given e € H*(X;Z), there is a Baire subset of Ag
such that when (J, Q) is chosen from this set, then there are but finitely
many classes in H?(X;Z) which can be Poincaré dual to the funda-
mental class of a pseudo-holomorphic submanifold appearing (with some
multiplicity) as an element in some {(Cg,my)} from H(e, J, Q).

Proof of Lemma 5.5. There are two steps to the proof. The first
part derives an apriori upper bound on the genus of any connected
component of a pseudo-holomorphic submanifold C' C H(e, J, Q) under
the assumption that (J, Q) is suitably generic. The second step deduces
the conclusions of Lemma 5.5 from the apriori genus bound.
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Step 1. Fix {(Cx,mi)} € H(e,J,2). Let ex denote the Poincaré
dual to the fundamental class of Cx. Since the Ci are pairwise dis-
joint, so the ey are pairwise orthogonal with respect to the cup product
pairing. This implies that

(5.9) e-e=Zek-ek.
k

Also, by linearity,

(5.10) c-e=Zc-ek,
k

where ¢ = ¢;(K).

With the preceding understood, it follows that the integer d (as
defined from e in (1.3}) is equal to the sum of the corresponding dj, (each
defined by (1.3) but with ey replacing e). According to Proposition 5.2,
if (J, Q) is chosen from an appropriate Baire subset, then all of these di
are non-negative. Since they sum to d, one is forced to conclude that
0<dy <d.

Write the genus of Cy using (1.2) and the e, version of (1.3) as

(5.11) gk =14+c-er —dy.

This last equation bounds ¢ - e; from below by —1 + g + di. Note that
this last number is non-negative unless dy = g = 0. That is, unless ey, is
Poincaré dual to a pseudo-holomorphic 2-sphere with self-intersection
number -1. The maximum number, n, of such disjoint 2-spheres is
apriori bounded by the homeomorphism type of X since each such 2-
sphere corresponds to a decomposition of X as a connect sum with a
CP? with its non-complex orientation.

With n understood, then (5.10) bounds c¢- e by ¢ e+ n. Put this
last bound back in (5.11) to bound g, by 1 +c¢-e+n.

Step 2. One further equality is required in order to complete the
proof of Lemma 5.5. To state this equality, let [w] denote the cohomol-
ogy class of the symplectic form w. By linearity,

(5.12) W) e=> [w]-e.
k

Since each e is Poincaré dual to a pseudo-holomorphic curve, the cup
product of [w] with ey is positive. Then, (5.12) bounds this cup product:

(5.13) [w]-e>[w]-ex >0.
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Now, let {e1,...} be an infinite set of cohomology classes such that
each class in this set is Poincaré dual to a connected pseudo-holomorphic
submanifold which appears (with some multiplicity) as an element in
some {(Cx,mg)} from H(e, J, Q). (Of course, there is no requirement
that these e; sum to e.) Lemma 5.5 follows from a demonstration that
{ex} has only finitely many distinct elements. Indeed, suppose not.
Then one can assume, with out loss of generality that no two elements
are the same. This assumption generates a contradiction as follows:
According to Step 1, there is an infinite subsequence, hence relabled
sequentially from 1, with the property that for each &, the genus gi, as
defined in (1.2) with e replacing e, is equal to some fixed g > 0. Let
{Ck} denote the corresponding sequence of pseudo-holomorphic sub-
manifolds. Think of each C; as a complex curve with its tautological
embedding ¢, : Cy — X. According to (5.13), there is a uniform
bound on the energy of the sequence {¢x}. With this undertood, one
can appeal to the Gromov compactness theorem (as described, for ex-
ample, in [6] and [15]) to describe the limiting behavior of the sequence
{(Ck,¢k)}. In particular, the Gromov compactness theorem implies
that the sequence {ex} of cohomology classes has a convergent subse-
quence. Since these {e;} are integral valued classes, it follows that the
convergent subsequence has only finitely many distinct elements, thus
contradicting the initial assumption.

d) Proof of Theorem 1.1, Part 1.

The proof of Theorem 1.1 is reduced here to a proposition which con-
cerns multiply toroidal classes and the numbers {r(C,m)} of Definition
3.2. There are three steps in this reduction process.

Step 1. This first step introduces the invariant that Ruan defines
in Section 5 of {7]. To begin, let e € H?(X;Z) be a class which is not
multiply toroidal. Suppose that a symplectic form w has been specified.
Then, choose (J, ) from the Baire subset ¢ given by Proposition 5.2.
It follows that the set KC(J,€2) is finite and consists of non-degenerate
(in the sense of Definition 2.1) pseudo-holomorphic submanifolds. As in
[7], introduce

(5.14) Ru(e) = ZT‘(C, 1),
c
where the sum is over the points C € K(J,{), and r(C,1) = +1 is

defined in (2.13). As asserted in Section 5 of [7], this number depends
only on the class e and the deformation class of the symplectic form w.
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The invariance of (5.14) follows directly from Assertion 3 of Proposition
5.2.

Step 2. The purpose of this step is to define an analog of (5.14) for
multiply toroidal classes. For this purpose, suppose that e € H?(X;Z)
is an indivisable class which obeys e-e = 0 and ¢-e = 0. Call such a class
indivisably toroidal. Let n > 1 be an integer. According to Proposition
5.2, there is a Baire subset of w-compatible, almost complex structures
J which have the following properties:

(5.15)

1. When m < n is a positive integer, then the set of connected,
pseudo-holomorphic submanifolds with fundamental class Poincaré
dual to m - e contains only finitely many elements.

2. Each element of one of these sets is n-non-degenerate in the sense
of Definition 4.1.

3. The number of elements in each of these sets remains unchanged
when J is perturbed slightly in the space of w-compatible, almost
complex structures.

With the preceding understood, choose the almost complex structure J
from the afore-mentioned Baire subset. Now, define

(516) Qu(e, TL) = Z HT(Ckamk)a
{(Crsmi)} k

where the sum is over all sets {(Ck, mx)} which obey the following:

(5.17)

1. Ci is an embedded, pseudo-holomorphic torus in X whose fun-
damental class is Poincaré dual to gxe for some positive integer
gk S n.

2. Each my is a positive integer and ), ggmi = n.

Here, r(C,m) is given in Definition 3.2. Note that the sum in (5.16) is
finite thanks to (5.15). (By the way, as e is not multiply toroidal, then
Ru(e) is well defined; it equals Qu(e, 1).)
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For purposes to come, it proves convenient to introduce a generat-
ing functional to keep track of the data {r(C,m)}m>0 when C is an
embedded, pseudo-holomorphic torus in X whose fundamental class is
Poincaré dual to g-e for some ¢ > 0. This generating functional P(C; z)
is a formal power series in the indeterminant z whose constant term is
1 and m’th coefficient is 7(C,m). That is,

(5.18) PCiz)=1+ Z 7(C,m) - Zp,.

m>1

Note that Qu(e,n) from (5.16) is the coefficient of 2, in the formal
power series [, P(Ck, z).

Step 3. Let e € H?(X;Z). This step rewrites Gr(e) in terms of the
invariant Ru(-) in (5.14) and the numbers Qu(-) that were just defined.
With the preceding understood, let S(e) denote the collection of sets of
unordered pairs of the form {(ex,nx)} where the following constraints
are imposed:

(5.19)
1. {ex} C H?(X;Z) is a set of distinct, non-multiply toroidal classes.

2. ng = 1 unless e - e, = 0 in which case n; can be any positive
integer.

3. er-en,=0if k #m.

4. e =), nieg.

Given some y = {(ex,nk)} € S(e), let 7(y) denote the set of those pairs
(ex,ng) which appear in y and obey at least one of the following two
conditions:

1. er-ep #£0.
(5.20)
2. c-e #0.

With the preceding understood, consider
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Lemma 5.6. Let e € H*(X;Z). Then Gr(e) in (1.7) is equal to
1
Gr(e) = (d!) Z H e [Ruex) ™
yeS(e) \(ex,nz)eT(y) (dk-) k(nk)

X II  Quler,m)
(ernx)E7(y)

(5.21)

Proof of Lemma 5.6. This is a simple resummation of (1.7).

Since Ru(e) is already known to be a deformation invariant of the
symplectic form X, Theorem 1.1 follows immediately from Lemma 5.6
and

Proposition 5.7. Let e € H*(X;Z) be an indivisable class which
obeyse-e =0 and also c-e = 0. Let n > 1 be an integer. Then Qu(e,n)
as defined above depends only on the deformation eguivalence class of
the symplectic form w.

e) Proof of Proposition 5.7.

The purpose of this subsection is to reduce the proof of Proposition
5.7 to that of four basic lemmas about the space X, of Proposition 5.2.
Four steps deduce Proposition 5.7 from these basic lemmas. The proofs
of the four basic lemmas occupy the next four subsections.

Step 1.  To begin the discussion suppose that wy and w; are a
pair of symplectic forms that are connected by a path {w: : ¢t € [0,1]}
of such forms. For each positive integer m < n, use Proposition 5.2
to find a section « : [0,1] — A so that the corresponding X, from
(5.4) for the class m - e is an oriented, 1-dimensional manifold. (The
Sard-Smale argument which finds « allows one to choose a fixed section
~ which works simultaneously for all choices of the integer m.) So as
not to confuse the different versions of (5.4) for different values of m,
introduce the notation X, ,, to denote the m - e version of (5.4).

With m fixed, let X = Up,,<md&ym,, topologized as the disjoint
union. None-the-less, say that (¢,C) € X is a weak limit of a sequence
{(tk,Ck)} C X if the sequence {t;} converges to ¢, and the sequence
{C}} with their embeddings {¢x : Cx —> X} converges in the follow-
ing sense: First, {Cx} converges to a complex torus Cy. Second, {t}
converges to a pseudo-holomorphic map ¢ : Cy — X which factors
as ¥ o f, where f : Cp — C is a holomorphic covering map, and
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1 : C — X is a pseudo-holomorphic embedding with the almost com-
plex structure on X defined by the image of v(¢).

For a poorly chosen class =, this X can be quite complicated. The
following sequence of lemmas detail the relevant structure of X' for a
reasonable . The proofs of these lemmas are provided in later subsec-
tions.

The statement of the first lemma below introduces the canonical
map (induced by projection) 7 : X — [0, 1] which is defined as follows:
A point in X has the evident form (¢,C), where t € [0,1], and C C X
is an embedded torus. Then, =n(¢,C) = ¢.

Lemma 5.8. The path y can be chosen so that X has the following
properties:

1. X is a 1-dimensional manifold which consists solely of points (¢,C)
where C C X is an embedded torus.

2. The critical points of © are each non-degenerate.

3. The set of weak limit points of sequences in X is disjoint from both
0, 1 and from the set of critical points of «.

4. The set of weak limit points and the set of critical points are both
finite sets.

5. Ift € (0,1), and 7= 1(t) contains neither critical points, nor weak
limit points, then w~l(t) is a finite set whose elements are n-
non-degenerate. Furthermore, the almost complex structure in-
dicated by (t) is such that (5.15) is obeyed and so the pseudo-
holomorphic tori in w~1(t) can be used in (5.16) for the computa-
tion of Qu(e,n).

6. If {(tm,Cm)} is a sequence in X with no convergent subsequences,
then there is a subsequence which has a weak limit point in X.

The next lemma, describes the structure of X near the critical points
of w. This lemma explicitly re-introduces the operator D from Section
2 and its twisted cousins {D, : « € H(C;Z/2)} from Section 3. (The
sign of the determinants of these operators are defined as in (2.13).)

By the way, here is a baby model for the situation described below:
Let h(e,a) be a smooth proper function on (—1,1) x R. Model v by
h~1(0), and model 7 as the map to (—1,1). The partial derivative of h
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with respect to o corresponds to the operator D, and the sign of this
derivative corresponds to the weight r(C,1). In this case, the generic
behavior near a critical point of 7 is given by the special case where
h(s,t) = a® — €. In this model, v is empty where ¢ > 0, and ~ consists
of two components where € < 0; and these are weighted with opposite
signs.

Lemma 5.9, below, asserts that this special model situation also
describes the local structure of X’ near a critical point of 7.

Lemma 5.9. The conclusions of Lemma 5.8 can be amended to
include the following: Let (t,C) € X be a critical point of the map
7. Then there exists an open interval J of the form (t — €,t) or else
(t+e,t); and there exists a pair of maps Ay : J — X with the following
properties:

—

. mo Ay = tdentity.

2. Image(Ay) is disjoint from Image(A_).

3. lims,; Ay (s) = (¢, C).

4. Image(Ay)UImage(A_)U (¢,C) is an open neighborhood of (t,C).
5

. Write MAy.(s) = (s,Cx). Then the sign of det(D) for C4 is pos-
itive and that for C_ is negative. However, for each ¢ # 0, the
corresponding signs of det(D,) agree for Cy and C_.

The following lemma considers the structure of A near the ends
of X as defined by sequences without convergent sequences. Here is
the baby model in this case: Let h(e,a) be a smooth, proper function

n (—1,1) x R which obeys h(e,—a) = —h(e,a). The model for = is
the union of (—1,1) x {0} with {(e,@) : h(e,a) = 0 and o # 0}/ ~,
where (¢,a) ~ (e, —a). The model behavior occurs for the case where
h = a- (€ — a?). The component (—1,1) x {0} corresponds to a torus
in the class e, and the other component corresponds to a torus in the
class 2 - e. The point (0,0) corresponds to a weak limit point. Note
that when € > 0, there is no 2 - e component, while for ¢ < 0, there
is one such component. This example illustrates how an e-component
can affect the count of a 2 - e component. The « derivative of A models
D, on the (—1,1) x {0} component of vy, and models D on the other
component of -y.

Lemma 5.10. The conclusions of Lemma 5.8 can be amended to
include the following: Let (t,C) be a weak limit point in X.

857
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1. There is an interval J which is either (t — €,t) or else (¢t + €,¢)
for some € > 0; and there is a map T : J — X which obeys:

a) 7orT = identity,

b) (t,C) is not a weak limit point of any sequence in X —7(J).
2. If (t,C) € Xy, then 7(T) C Xy om.

3. If {(tk,Cx)} C 7(J) is a non-convergent sequence, then {ty} con-
verges to t and {Cyx} converges to a complex torus Cy while the
sequence of embeddings {yy : Cx — X} converges to a map g
of the form 1o f, where f is a non-trivial, 2 to I covering map of
Co onto a complex torus, C, and v is the tautological embedding
of C into X.

4. There is a map X : [t —e€,t+ €] — X, with wo X = identity and
such that A(t) = (¢t,C).

5. Write \(s) = (s,C"). Let 1 € H*(C;Z/2). Then the operator D,
for C' has trivial kernel unless ¢ classifies the covering map f. In
this case, the kernel is trivial except when s =t (so C' = C).

6. Furthermore, when v classifies the map f, then the sign of det(D,)
changes as s passes t. For the other choices of ¢, the sign of
det(D,) is independent of s.

Note that each torus in the image of the map 7 from Lemma 5.8
has its operator D and thus an associated +1 from sign(det(D)) as
defined in (2.13). This sign can be determined in terms of the sign of
the determinants of the operators D and D, for a torus in the A —image
of J (but in particular, not C'). Here, the subscript ¢ denotes the
element in H'(C;Z/2) that classifies the covering map f. One can also
determine the signs of the twists of D for tori in the image of 7. In this
regard, remark that the 2 to 1 covering map f induces

(5.22) f*:HYC;Z/2) — HYC";Z./2),

which is 2 to 1 onto its image. Note that f* is linear and sends : to zero
when ¢ classifies f.
With the preceding understood, consider:

Lemma 5.11. The conclusions of Lemma 5.10 can be amended to
include the following:
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1. Let v € HY(C;Z/2) classify the covering map f. Then the sign of
det(D) for a torus in 7(J) is determined from the signs of det(D,)
and det(D) from a torus in MJ) by the rule

sign(det(D))|image(r)
= — sign(det(D.)) limage(x) - 5ign(det(D))limage(x):

2. Let/ € HY(C';Z/2) denote the non-zero class in the image of f*.
Then

Sign(det(DZ))llmage(T) = H Sign(det(Dj))limage(/\)~
Jf(G)=¢

3. Let ' € HY(C';Z/2) be any class not in the image of f*. Then

sign(det (D:)) lImage(T) =1

Step 2. According to Assertion 3 of Lemma 5.8, the pseudo-
holomorphic tori in 77!(¢) can be used to compute @(e,n) when t is
neither a critical value of «, nor a limit point of the w-image of a non-
convergent sequence. In the analysis which follows, it will be assumed
that the critical points of 7 have distinct critical values, and that these
are discrete from the finite set of times ¢ which label (in part) a weak
limit point (¢,C) € X. In the subsequent steps, the latter set of times
will also be assumed distinct. These assumptions are for convenience
only, and the arguments below are only notationally more complicated
when these assumptions are relaxed. The arguments without these as-
sumptions are left to the reader. Note that one can also prove that the
aforementioned times ¢ can be made distinct by perturbing +.

Suppose that ¢ is a critical value of 7. Then, for all € > 0 but small,
one can use either 7~!(t + ¢) to compute Qu(e,n). The purpose of this
step is to establish that the computation of Qu(e,n) using 77! (t — €)
gives the same answer as that using 77 (t + ¢).

To begin, let (t, C) be the relevant critical point. If this point (¢, C)
lies in &, ,, then Assertion 5 of Lemma 5.9 impies that the before ¢
computation and after ¢ computations of Qu(e, n) give the same answer.
(Either one +1 and one -1 disappear from the sum in (5.16) as € crosses
zero, or else one +1 and one -1 appear.)

To argue in the general case, assume first that J = (¢ —¢,¢). The
argument for the other case is essentially identical and left to the reader.
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Suppose also that (¢,C) € X, , for some m < n which divides n. Let
Qu_(e,n) denote the value of (5.16) as computed with #=1(¢ — €) and
let Qu, (e,n) denote the analogous sum as computed with 7~ 1(¢ + ¢).
As in Lemma 5.9, write Ay (t —€;) = (t —€1,C+) when €; € (0,€). Then

Qu, (e,n) — Qu_(e,n)
(5.23) =— > r(Cy,m)-r(C-,ma)

(m1,m2)

-Qu(e,n—m-mi —m-ma),

where the sum is over all pairs of non-negative integers (mi,mgy) with
the property that 0 < (m1 +ms) - m < n. To put this last formula into
perspective, introduce the formal power series P(C, z) from (5.18), and
also

(5.24) Q=[] =1+ Quy(e,p) -2

p2>0

Now, reintroduce the map § in (3.1). As P(C;z) depends only on the
map &, it proves useful to exploit this fact by introducing the formal
power series {Pyy : & = 0,1,2,3} where Py = P(C;-) in the case
where the map § for C sends the trivial element to 1, and precisely k
other elements to -1. Likewise, P_x = P(C;-) in the case where the
map 6 for C sends the trivial element and precisely k other elements to
-1.
With the preceding understood, (5.22) implies that

(525)  Qi(2) — Q-(2) = (L - Pya(2™) - Pp(2™) - Q4 (2).

(This makes use of Assertion 5 of Lemma 5.9.) If Q@ (z) and Q- (z) are
equal, it must be the case that

(5.26) Pyy(2) = 1/P_g(2).

The reader can verify (5.26) using (3.2) and Assertion 5 of Lemma 5.9.

Step 8. Now suppose that t is the limit point of the n-image of a
non-convergent sequence in X. As in Lemma, 5.10, introduce the interval
J and the map 7. Suppose first that J = (t+¢,t). Write 7(s) = (s, Co)
and write (s) = (s,C;) when s > t. And, write (s) = (s,C_-) when
s < t. Introduce, as before, Q. (t). Also, introduce the formal power
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series P(Cp; z) and P(Cy, z). Then, (5.16) implies that @, and Q_ are
related by

(527) Q4 — Q- = (P(Cy;2™) - P(Co; 2™)/P(C; #™) = 1) - Q_.
Thus, if Q+ are equal, the forced conclusion is that
(5.28) P(Cys2) = P(C-;2)[P(Co; 22).

Step 4. This step uses Lemma 5.11 and (5.28) to further constrain
the possibilities for Pyy. Indeed, Lemma 5.11 with (5.26) and (5.28)
determine all 16 possibilities for Py in terms of any one, in particular
Pyy. To prove this assertion, consider (5.28) where ¢ for C_ has image
equal to +1. Then, § for C; will map the trivial element to +1 and
exactly one non-trivial class ¢ to -1. (This is the class which classifies
the 2 to 1 covering.) According to Lemma 5.11, the image of § for Cy
is solely the trivial element. This implies that

Po(z)
(5.29 Pii(z) = =222
) (o) =p +0(2?)
For the next case, suppose that ¢ for C_ sends the trivial element to
1 and exactly one element to -1, while § for C; sends the trivial element
to 1 and exactly two elements to -1. According to Lemma 5.11, § for Cy

will send the trivial element to 1 and exactly one element to -1. Thus,
(5.28) reads

z z 2
I

Finally, suppose that ¢ for C_ sends the trivial element to 1 and
exactly two elements to -1, while § for C; sends the trivial element to 1
and all three other elements to -1. According to Lemma 5.11, § for Cy
will send all elements to 1. Thus (5.28) reads

Piy(z) _ Pro(z)Pro(2?)
Pyo(2?) (P+o(22))?

Given (5.29-31), one can use (5.26) to determine P_g(z). It is left
to the reader to check that no other constraints on Py are introduced
by the other possibilities for § on C; and on C_. The reader can also
verify (5.29-31) and (5.26) for (3.2) with the choice

1

. Pyg=—.
(5.32) =7

(5.31) Pys(z) =
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No new information about e comes from a different choice for P,y as
long as the new choice begins as 1 + z + O(z?).

f) Proof of Assertions 1, 2 of Lemma 5.8 plus Lemma 5.9.

The proofs begin with a digression to discuss some specific generic-
ity assumptions that can be imposed on the space X. (These genericity
assumptions are proved by arguments which involve only minor modifi-
cations to those which proved Assertion 3 of Proposition 5.2.)

To begin the digression, recall that the complex structures on the
torus are parameterized by a point in the quotient of C; = {7 € C:
im(7) > 0} by the action of the group S1(2; Z)/{+£1}. This action is free
on the compliment of a countable set of points. Let C;4 C C denote
the subset where this action is free. With the preceding understood,
remark that there is a natural map ¢ : X — C, /SI(2;Z) and one can
choose the path 7 so that the image of ¢ lands in C; /SI(2;Z). This
last point is.proved using the fact that C;\C,, has codimension 2 in
the arguments for Assertion 3 of Proposition 5.2.

Now introduce the vector bundle G — C,  / S}(2;Z) whose fiber at
a given orbit is the vector space of pairs (v, 1) of complex valued func-
tions on the complex curve which the orbit parameterizes. Associated
to each (¢,C) € X is the operator D as in (2.7); and with this point
understood, the coefficients of D define a natural map ¢ : ¥ — G
which covers the map q.

It proves useful in subsequent arguments to be able to assume that
qo is transversal to certain subvarieties in G. Here, a subvariety means a
subspace D which is a countable, disjoint union Uy D* of submanifolds
which are constrained by the following two requirements. First, D*
always has codimension k. Second, UkaODk is always closed.

The following lemma is proved by making some minor modifications
to the fiber product set up that is used in the proof of Assertion 3 of
Proposition 5.2. As with Assertion 3, the result follows in the end from
the Sard-Smale theorem.

Lemma 5.12. Let D C G be a fized subvariety. Then y can be cho-
sen in Proposition 5.2 so that the map qp is transversal to the component
submanifolds of D. In particular, qy misses Ukzzpk and s transversal
to DL

With this lemma understood (the proof is left to the reader), note
that the proofs of Lemmas 5.8 and 5.9 invoke this lemma for a very
specific set of varieties. The relevant varieties are described in
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Lemma 5.13. Introduce G as above.

1. Let D C G denote the set of triples (7, (v, 1)) for which the operator
D, has a kernel for some + € H(C;Z/2), where, the curve C is
parametrized by the orbit of 7. Then D is a subvariety whose
codimenston-1 stratum consists of those triples where all but one
D, has trivial kernel, and one D, has kernel dimension 1.

2. Fiz a positive integer n > 1 and let D' C G denote the set of triples
(1, (v, p)) with the following property: There is a representation p :
m1(C) —> P, and there is a section s of V,®C which is annihilated
by D for which subspace Os C Kernel(D) has dimension 2 or more.
This D' ts a subvariety with no codimension 0 or codimension I
strata.

The proof of this lemma is deferred to Subsection 5h. Given the
preceding two lemmas, one can now require that

1.The map ¢ sends X into C, /SI(2;Z).
(5.33) . .
2.The map qp is transversal to all strata of the varieties

D and D’ of Lemma 5.13.

End the digression.

Proof of Assertions 1 and 2 of Lemma 5.8.

Assertion 1 of the lemma is directly a consequence of Proposition
5.2.

To prove Assertion 2, remark first that the proof of Assertion 3 of
Proposition 5.2 shows that (¢,C) is a critical point of the map = if
and only if the operator D at C has non-trivial kernel. In this case, it
follows from (5.33), that this kernel has dimension 1. Indeed, whether
or not (t,C) is a critical point of 7, perturbation theory can be used to
describe a neighborhood W C X of (t,C). This is done as follows: If
(t+¢Ce) € X is near to (t,C), the Cc will be near to C' and so can be
expressed as the image of C by a section v of the disk bundle U — C.
The condition that C, be pseudo-holomorphic for the complex structure
at v(t + €) at time ¢ + € translates into a non-linear differential equation
for v.. This equation has the schematic form

(5.34) Dve +¢- A+ R(e,vs, V) = 0.
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Here, R(e,-,) is, for |¢| small, a smooth, fiber preserving function from
N&(T*C®N) to T'°C®N with | R(e, v1, v2)| bounded by some uniform
multiple of (2 + |v1|? + |v2]|?). (This R is linear in its last argument.)
Meanwhile, V is the induced covariant derivative on sections of N, and
A is a particular section of 70! ® N which is proportional to the pro-
jection onto N of the restriction to Ty ;C of the derivative at time ¢ of
the path, «y, of almost complex structures.

When kernel(D) = {0}, it is a straightforward exercise with the
implicit function theorem to see that (5.34) has a unique small solution
ve when ever ¢ is close to 0. (Here, small means small in the C® norm.
Even so, all C* norms of v, can be estimated uniformly in terms of k
and |¢| when the C° norm is small.) See, e.g. the proof of Lemmas
5.4 and 5.5 in [11] for the details on setting up the implicit function
theorem in a space of Holder continuous functions. Note that v, will
depend smoothly on € for € near 0. From this, one sees that (¢,C) is not
a critical point of # when D has trivial kernel.

Now suppose that kernel(D) is 1-dimensional, and spanned by s. In
this case, cokernel(D) is 1-dimensional, and this gives an obstruction to
solving (5.34). To analyze the obstruction, one writes ve = a - s + w,
where @ € R is assumed small, and where w is L%-orthogonal to s.
Then, solve the projection of (5.34) orthogonal to cokernel(D) for w
as a function of the pair (¢, ). The implicit function theorem finds a
unique, small solution w = w(e, @) to this modified equation when (€, o)
are both small. Note that w is a smooth function of the pair (e, o) whose
size is O(e + |a?).

With w understood to be a function of € and a, project (5.34) onto
the cokernel of D. Choose a non-zero element s* € cokernel(D) and
this projection defines a smooth function, g, on a neighborhood of the
origin in R? whose zero set is diffeomorphic to a neighborhood of (¢, C)
in &X. Here, note that the Taylor’s expansion for g begins with

(5.35) g=r1-e+ry-at+...,

where r; and r, are numbers. For example, 7 is obtained by integrating
s*A over C.

With (5.35) understood, remark that r; is non-zero since X is known
to be a manifold. And, 75 is non-zero because gy (see (5.33) is assumed
to be transversal to D at (¢,C). In this case, the differential of the map
F of Step 4 of the proof of Lemma 3.1 pulls back to & near (¢, C) to be
proportional to rs.
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Assertion 2 of Lemma 5.8 now follows from (5.35) with the observa-
tion above that neither 1 nor 79 is zero.

By the way, note that the preceding has identified the critical points
of m with the go-inverse image of the subset of G for which the corre-
sponding operator D has 1 dimensional kernel.

Proof of Lemma 5.9.

Assertions 1-4 of the lemma follow from the fact that a neighborhood
of (t,C) in X has been proved to be diffeomorphic to a neighborhood
of (0,0) in the zero set of the function g given by (5.35). (Remember
that neither r; nor rs is zero. Thus, « is a smooth parameter on X near
(t,C), while € is a smooth parameter on the complement of (¢,C) in a
neighborhood of (¢,C) in X.) As for Assertion 5, remark first that «
in (5.35) defines a smooth parameter on a neighborhood in X of (¢, C).
With this understood, the sign difference for det(D) between C. and
C_ follows from the fact that the function F in Step 4 of the proof of
Lemma 3.1 restricts to the afore mentioned neighborhood of (¢,C) so
as to vanish at o = 0 but have non-zero « derivative at o = 0.

The lack of sign change for the determinant of D, when ¢ # 0 can
be argued as follows: The fact that ¢ is transversal to the variety D
implies that kernel(D,) is trivial at C when ¢ # 0. Since the absence of
a kernel is a stable condition, this kernel is trivial for D, as defined for
tori C1 when (s,C1) € X is close to (t,C).

f) Proof of Assertions 3-6 of Lemma 5.8 and Lemma 5.10.

The proofs here require a four part digression to describe in greater
detail the “ends” of X as defined by the behavior of sequences without
convergent subsequences.

Part 1. To begin the digression, fix (t,C) € X and a holomorphic
torus C' together with a holomorphic covering map f : C' — C of
degree at least 2. Write v’ for the composition of f with the tautological
embedding ¢ : C — X. Suppose now that there exist small € and a
map x : C' — X which is close to 1) o f and is a pseudo-holomorphic
embedding as defined by the almost complex structure given by y(t+e€).
If y is close to 1 o f, then its image will lie in the tubular neighborhood
U, and y is defined by a section s of f*N. The condition that the
image of x be pseudo-holomorphic with respect (¢ + €) translates into
a differential equation for s of the form

(5.36) D's+e- f*A+ (f"R)(e,5,V's) = 0.

Here, D' is defined on the space of sections of f*N over C’ by (2.7) with
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the understanding that the v and g which appear are the f-pull-backs
of those which define the operator D on C. Likewise, the covariant V'
is defined in a natural way by the pull-back of data on C.

With (5.36) understood, remark that the group of deck transforma-
tions of f lifts in a natural way to an action on the bundle f*N. It
also lifts to a holomorphic action on TH°C’. Thus, the group of deck
transformations of f acts linearly on the space of sections of f*N and
also on the space of sections of T1'°C’® f*N. Furthermore, the operator
D’ which appears in (5.36) is equivariant with respect to this action, as
is the covariant derivative V’'. Also, f*A in (5.36) is invariant under
the group of deck transformation, and R(e, -,-) is also well behaved.

The naturality of (5.36) with respect to the deck transformations
can be exploited by decomposing the section s as a sum, s = s¢ + 51,
where sy transforms trivially under the group of deck transformations
(so is pulled up from C by f), and where s; averages to zero under the
group of deck transformations. Then, split (5.36) into its deck invariant
and non-invariant parts to obtain two equations:

1. DIS()+€'f*A+H0'f*R(Ea SO+311VI(SO+SI)) =0.
(5.37)
2. D'si+ Hl f*R(E, So + 81) =0.

Here, [], is the L? orthogonal projection on C’ onto the deck-invariant
subspace of C®(C'; T1°C' ® f*N) , and []; is the complimentary pro-
jection. In particular, note that

(5.38)  [TI1 f*R(e, 50+ s1)| < z- (Isal + [Vs1]) - (€ + [so] + [sal),

where z is a C-dependent constant. (This follows from the fact that
I1; f*R must vanish when s; = 0.)
The focus on (5.36-38) here is justified by

Lemma 5.14. Let {(tx,Ck)} C X be a sequence with no convergent
subsequence. Then there is an infinite subsequence with a weak limit
point, (t,C) € X. Furthermore, there ezists a complez torus C' with
a holomorphic covering map f : C' —> C of degree at least 2 with
the following significance: Given § > 0, there ezists, for all but finitely
many indices k, a section s of f*N, which is unique up to the action of
the deck transformations of f, and which has the three properties listed
below:

1. 1| <6,
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2. s obeys (5.36) with e =ty — t,

3. The push-forward of the image of s to the tubular neighborhood U
of C embeds the torus C' in X as the torus Cy.

Note that the embedding in Assertion 3 is not generally pseudo-
holomorphic with respect to the given complex structure on C’.

Proof of Lemma 5.14. Repeat the arguments which prove Lemma
5.3.

Part 2. This part begins the analysis of (5.37). Consider first

Lemma 5.15. Suppose that the kernel of D' consists solely of deck
invariant elements. Then, when |e| is small, any solution s to (5.37)
with small C%-norm has s = 0 and s thus the f-pull back to C' of a
solution to (5.84) on C.

Proof of Lemma 5.15. Under the assumptions of the lemma, the
L? norm of D's; on C' is greater than some non-zero multiple A of the
sum of the L2 norm of s;. However, according to (5.37.2) and (5.38),
the L2 norm of D's; is smaller than a multiple, say 2/, of the sum of L2
norm of s;. Here, 2’ is itself bounded by a multiple of the larger of ||
and the C° norm of s. Thus, for small |¢| and s, the inequality A > 2’
will hold, thus forcing the conclusion that s; = 0.

Here are some immediate corollaries to the last two lemmas:

Lemma 5.16. Assume that the map gy from Lemma 5.12 is transver-
sal to the varieties D and D' of Lemma 5.13. Then:

1. (t,C) € X is a weak limit point only if there ezists non-zero
+ € HY(C;Z/2) such that the kernel of D, on C is non-trivial.

2. The set of weak limit points in X is discrete and disjoint from the
set of critical values of .

3. A sequence {(tx,Cr)} € X which has (t,C) € X,;,m as its weak
limit point must have all but finitely many members in X, opm,.

Proof of Lemma 5.16.

The lemma follows from the previous two lemmas with one extra
observation: If s is in the kernel of D' on C’, then the push forward of
s gives an element s in the kernel of D acting on sections of V, ® N,
where p is defined from the covering map f. Conversely, a section of
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V, ® N in the kernel of D defines an element s in the kernel of D’ on
some covering torus C' of C.

To be more explicit, remark that a covering map f : C' — C of
degree n defines a representation p of 7 (C) into P, as follows: Take any
point in C. Then, label the inverse image as {1,... ,n}. The group of
deck transformations (a quotient group of 71 (C)) permutes this set and
thus defines p. Conversely, a representation p of 71(C) into P, defines
an n-fold covering, f : C' — C, where C’ is a complex torus, and f is
a holomorphic covering map.

To see how sections of V, on C correspond to functions s on C’,
note that the torus C' has the form C/H' where H' C H is a sublattice.
Thus, C' is tiled by copies of the fundamental domain of C. Label one
of the fundamental domains of C' in C’ as C[1]. Then, the other copies
have a unique labeling as C[2],... ,C[n] so that the action via p of Z@®Z
on {1,...,n} describes how the group of deck transformations acts on
the set {C[k]}. Now, let s be a section of V, on C. Then s defines a
complex valued function, s, which is obtained as follows: The section s
pulls up to C as an n-tuple of complex numbers, (s1,...,8,). With this
understood, define s by requiring that its restriction to the fundamental
domain C[k| equal s;. Conversely, a complex valued function s on C’
defines a section s = (s1,... ,sn) of V, by setting s = 5|

Part 8. To continue the analysis of (5.37), consider now the case
where (¢,C) € X has kernel(D,) non-trivial for some non-trivial class ¢
in HY(C;7Z/2). One can assume that this is the case for only one such
¢, and that the kernel of D for C is trivial.

To begin, remark the group of deck transformations is isomorphic
to Z/2. With this undertood, the sections of f*N decompose as direct
sums sg + s1, where sg is invariant under the non-trivial deck transfor-
mation, and s; changes sign under this deck transformation. As noted
earlier, s¢ is the f-pull back of a section of N. Now, s; is the f-pull-back
of a section of ¢, ® N, where ¢, is the real line bundle that is param-
eterized by the class «. Thus, to say that D’ has a non-deck invariant
kernel is to say that the kernel of D, on C is non-trivial.

It is a straightforward task to set up a Banach space contraction
mapping argument (this is the implicit function theorem in disguise)
which finds a unique, small solution sy to (5.37.1) when |e¢| and |s|
are small. The precise choice for the Banach space is immaterial save
that it should control the sup norm of s and its covariant derivative.
For example, one can use a Holder space of sections which controls
the Holder norm of, at minimum, the first derivative of the section. (A
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similar contraction mapping construction is used in the proof of Lemmas
5.4 and 5.5 in [11] to which the reader is referred.) In any event, the
application to (5.37.1) of a contraction mapping argument provides a
unique small in norm sg which depends smoothly on € and s; when the
latter are small.

The cokernel of D' obstructs solvability of (5.37.2). With this un-
derstood, one proceeds by fixing non-zero s € kernel(D’) and writing
§1 = a - s + s2, where « is a real number, and s, is L? orthogonal to
the kernel of D’. One can then set up a contraction mapping argument
(as in the previous step) to find so as a function of the pair (¢, @) when
the latter are close to 0. Here, sy is found by solving the projection
of (5.37.2) onto the orthogonal compliment of the cokernel of D’. The
contraction mapping theorem asserts that when (e, ) are close to zero,
then there is a unique small solution s; = sa(e,a) to this projected
equation. Furthermore, s is a smooth function of its arguments.

Choose an element s* in the cokernel of D', With s; and sy now
understood to be functions of (¢, @), the projection of (5.37.2) onto
cokernel(D’) defines a function g, on a neighborhood of the origin in
R?, of the form

(5.39) gle; @) = a- (r1- € — h(e, a)).

Part 4. The lemmas in this part describe the function g.

Lemma 5.17. The function g in (5.89) has the following properties:

1. There is an embedding g~1(0) N {a > 0} onto an open set V C
X with the property that (t,C) is not a weak limit point of any
sequence in X — V. Also, this embedding composes with the map
7 to send (e,a) to t + e.

2. r1 #0, and h(0, @) is not identically zero, but h(0,0) = 0.
3. hie,—a) = h(e, ).

Proof of Lemma 5.17. The embedding of g~1(0) N {e > 0} onto an
open set V C X is given by associating to a pair (¢, &) the time ¢+ ¢ and
the embedded torus in X which coincides with the image in U of the
section s = sg + as + s2. In this regard, note that the embeddings that
are defined in this way using a < 0 agree with those that are defined
using —a > 0. The reason is that g(e, —c) is equal to —g(e, o) since
(5.37.2) is the projection onto the subspace which changes sign under the
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action of the non-trivial deck transformation. This means that g—!(0)
is symmetric under changing o to —a. Although this change effects the
section s, the effect is equivalent to that which is imposed by composing
s with a deck transformation of f. Thus, the images of s as defined by
« and —a agree. (The fact that g changes sign as o goes to —a explains
Assertion 3.)

Lemmas 5.14-5.16 imply that X' —V contains no sequences with weak
limit equal to (¢,C). (This uses two facts: First, the small solution sg
to (5.37.1) is uniquely defined by (¢,s1) when |¢| and the C° norm of
sy are small. Second, the small solution s2 to the projected version of
(5.37.2) is uniquely defined by (e, @) when the latter are close to zero.)

As for the second assertion of Lemma 5.17, remark that r;1 # 0
is guaranteed by the fact that v is transversal at (t,C) to the variety
D. This is proved by an argument which mimics that in Step 4 of
the proof of Lemma 3.1. Indeed, the number r; is obtained by first
extending D' to be a function of € by considering the operator as defined
by points (¢ + €, C¢) in a neighborhood of (¢,C) in &. Then, r; is equal
to the integral over C' of the e-derivative at € = 0 of the function s*D’s.
Meanwhile, an argument which is exactly analogous to that in Step 4
of Lemma 3.1 identifies a non-zero multiple of this same r; with the
pull-back to X of the derivative at (¢,C) of a function on G, whose zero
set (locally) defines the codimension 1 part of D.

As for h(0,-), were it to vanish on an open set, then, according to
Assertion 1, a line segment where ¢ = 0 would lie in V. However, the
latter is precluded by the fact that 7 has non-degenerate critical points.
The fact that h(0,0) = 0 is a direct consequence of its definition.

There is one last fact to establish here, and that concerns the func-
tion A in (5.39) for generic .

Lemma 5.18. The conclusions of Lemma 5.8 can be amended to
include the following: At each weak limit point (t,C) € X, the function
h in (5.89) has the additional property that the Taylor’s series of h(0, ")
at a = 0 is non-trivial. In fact, one can assume that this series starts
with h(0,a) =r2-a® + ..., where ry # 0.

Proof of Lemma 5.18. 'The fact that h(0,-) has a non-vanishing
Taylor’s expansion at zero is automatic in the case where X and the
almost complex structure 7y(¢) are real analytic. The general case can
be had via a Sard-Smale argument along the lines that gave Assertion
3 of Proposition 5.2. The details are omitted.

End the digression.
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Proof of Assertions 3-6 of Lemma 5.8.

To prove Assertion 3, remark first that Lemmas 5.14-5.17 imply that
the set of weak limit points of X coincides with the set of points which
are sent by Lemma 5.12’s map qg into the part of the variety D of Lemma
5.13 where one of the operators from {D, : ¢ # 0} has non-trivial kernel.
Then Assertion 3 follows from the assumed transversality of ¢o to D.

To prove Assertion 4, note that the fact that the critical points of 7
are non-degenerate implies that there is but a finite set of critical points
which lie in the compliment of the union of all sets V from Lemma 5.17.
There is one such V for each weak limit point in X. Now fix attention
to one of the sets V. Since r; in (5.39) is non-zero, the coordinate o
defines a smooth parameter on the set V (where « is close to zero.)
Then, (5.39) and the implicit function theorem give ¢ as a function of
o where « is small. According to Lemma 5.18, the function A(0,-) has
a non-trivial Taylor’s expansion at @ = 0 and thus so does ¢ since its
expansion starts with the first term of that for 7 *- h(0, @). Since € has
a non-trivial Taylor’s expansion at a = 0, there are only finitely many
critical points of 7 on any given set V.

With the preceding understood, the proof of Assertion 4 of Lemma
5.8 reduces to that for the assertion that the number of weak limit
points in & is finite. In this regard, note that this number is locally
finite because of the assumed transversality of gqg. To make further
progress, consider the following induction proof: Observe first that the
number of weak limit points in X, ; is finite since the latter is compact.
Now, suppose that this number is finite in X, ; for all k¥ < m where
m > 1 is assumed. If there is an infinite number of weak limit points
in X, m, then there would be an infinite number in some V associated
to a weak limit point (¢,C) in X, /5. In this case, one could find a
sequence {(tx,Ck)} € Xyom which had (¢,C) as a weak limit point.
This last possibility is precluded by Assertion 3 of Lemma 5.16.

The fifth assertion of Lemma 5.8 is implied by Lemma 5.3 together
with the afore-mentioned fact that every point (¢,C) € & which is
mapped by go to D U D’ is either a critical point of 7 or else a weak
limit point.

The final assertion is proved in Lemma 5.14.

Proof of Lemma 5.10. Assertions 1-3 follow directly from Lemmas
5.17 and 5.18. Assertion 4 follows since the weak limit points are disjoint
from the set of critical points. Assertions 5 and 6 follow since the map
go in Lemma 5.12 can be assumed to be transversal to the subvarieties
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D and D' of Lemma 5.13.

g) The proof of Lemma 5.11.

Here is the strategy: The operator D for the torus which is pareme-
terized by 7(t + J) is, for d near zero, a perturbation of the analogous
operator which is associated to the torus C'(4) which double covers the
torus that is parameterized by A(t + ). With this fact understood,
perturbation theory computes the sign of the determinant of D for the
former torus in terms of that for the latter. Meanwhile, the sign of the
determinant of D for the latter can be computed in terms of the sign of
the determinants of D and D, for the torus which is parameterized by
At +6).

To prove Assertion 1, a straightforward application of perturbation
theory finds that

(5.40) sign(det(D))limage(r) = — sign(det(D))|cr(s)-

In fact, the relative signs here are the same as those of the differential
(with € fixed) of the function r; - 6 - @ — h(d, @) at @ = 0 and at its first
small zero.

To compute the sign of det(D) for C'(4), remember that this torus
double covers the torus C(d) from A(t+6). As remarked previously, the
space of functions on C’(§) decomposes as the direct sum of the deck-
invariant functions and the functions which change sign under the action
of the non-trivial deck transformatioon. The deck invariant functions
are the f-pull-backs of functions on C(4). A function which changes
sign under the non-trivial deck transformation is the pull-back to C’'(4)
of a section over C'(6) of the twisted line bundle ¢,. Now, D on C’(4)
respects this decomposition. Thus,

(5.41)  sign(det(D))|cr(s) = sign(det(D))|c(s) sign(det(D,))|c(s)-

These last two equations imply the first assertion of the lemma.

To prove the second assertion, label the non-trivial classes in
HY(C;Z/2) as 1,11 and 1. Then ¢/ = f*;; = f*15. With this last
point understood, note that the non-trivial deck transformation pulls
back ¢/ to itself, but even so, there is no natural lift of this deck trans-
formation to the line bundle €. Rather, there are two equally natural
lifts, differing by multiplication by -1. With the choice of a lift, the
space of sections over C' of ¢/ decomposes as a direct sum of those
sections, which are deck invariant, and those which change sign under
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the non-trivial deck transformation. After possibly renaming ¢ o, the
former are identified with the sections which are pull-backs from C of
sections of ¢1, and the latter are the pull-backs from C of sections of 5.
Furthermore, the operator D] on C’ respects this splitting. Thus, D] on
C'(6) has trivial kernel if and only if both D,; and D,, on C(6) do, and
if so, then, the sign of det(D]) is the product of the signs of det(D,,)
and det(D,,). The assumption about the triviality of the kernel of D,, ,
is valid for § near zero because of the assumed transversality of the map
go- Finally, with the sign of det(D!) determined, perturbation theory
insures that its sign is the same as that for the corresponding operator
on the torus which is parameterized by 7(¢ + §).

To prove the third assertion of Lemma 5.11, consider first the op-
erator D] on C’. Any element in the kernel of this operator pushes
forward to C as an element, s, in the kernel of the operator D on some
V, ® N, where p is a representation of #;(C) into P4. More to the
point, the subspace O; C kernel(D) will have dimension at least two.
Thus, the assumption that gy in Lemma 5.12 is transversal to D’ in
Lemma 5.13 prevents such a kernel from appearing. Furthermore, the
fact that D’ has only strata with codimension two or more implies that
sign(det(D!)) =1

Finally, a standard perturbation theory argument shows that the
sign for det(D)) on C’ agrees with that for the analogous operator for
the torus which is parameterized by 7(¢ + ) as long as 4 is close to zero.

h) Proof of Lemma 5.13.

The first assertion of the lemma is a restatement of the results in
Lemma 3.1, so only the second assertion need be considered here. The
proof of the second assertion is accomplished in eight steps.

Step 1. To begin, write the complex torus C as C/H. Now let P,
denote the permutation group on n letters, and let p: Z & Z — P, be
a representation and write V, — C as V, = C x,C". Here, Z® Z acts
on C so that the pair (n;,n9) translates a point in C by n; + no7 € H.
In all of the following, assume that the representation p acts transitively
on the set {1,...,n}.

This first step considers the possibilities for the dimension of the
kernel of D on the space of sections of V, ® C.

Lemma 5.19. If the p-action of Z& Z on {1,... ,n} has precisely
one orbit, then the kernel of D on the space of sections of V, has di-
mension 2 or less.

Proof of Lemma 5.19. For the purposes of the proof, remember
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that the representation p also defines a finite, holomorphic covering,
f:C"—» C, where C' is a complex torus, and p is a holomorphic cov-
ering map. This covering has the property that f*V, is holomorphically
isomorphic to the trivial complex n-plane bundle. More to the point,
the sheaf of sections of V, is isomorphic to the push-forward by f of
the sheaf of sections of the trivial bundle over C. Thus, a function s
on C' corresponds to a section s of V), and vice-versa. Furthermore,
the section s is in the kernel of D if and only if the function s on C’
is annihilated by the operator D’ on C’, defined as in (2.7) with v and
u given by the f-pull-backs of their analogs defining the operator D on
C.

According to Lemma 5.1, the kernel of D’ is at most 2 dimensional,
and thus, so is the kernel of D on the space of sections of V, ® C.

Step 2. Now introduce the set D, C G of triples (7, (,v)) for which
the operator ‘D has a section s of V, ® C in its kernel with dim(O;s) = 2.
This step constructs a local model for a neighborhood in D, of a given
pair § = (7, (v, ).

To begin, suppose that ¢° = (7 + 7%, (v + %, p + p?)) € D, is close
to £&. To avoid confusion, agree to use D to denote the operator in
(2.7) as defined by ¢, and use D° to denote the analogous operator as
defined by £°. The fact that £ lies in D, means that there is a set (s, )
of linearly independent elements in the kernel of D. There is a similar
set (s + s%,¢ + t°) for the kernel of D°. If |7°| and the C° norms of v°
and u0 are small, then (s°, %) will be small and can be chosen to be
L2-orthogonal to the span of (s,t). Then, s° is completely characterized
by this last condition, and by the condition that it obeys a certain
equation of the form

(5.42) Ds; + k(%) - V(s + 5% +1%s + %) + u?(3 +3°) = 0.

Here, h is a certain section of Hom(7T*C;T%!C ® N) which depends
analytically on 7° and vanishes when 70 = 0. Also, t° is completely
characterized by the condition that it be L2-orthogonal to the kernel of
D and that it solve the analog of (5.42) where ¢ replaces s and where #°
replaces s everywhere.

Now, the operator D is not invertible; and as its index is zero, its
cokernel has dimension 2. This cokernel is isomorphic in a natural way
to the kernel of the L?-adjoint of D, an operator which will be denoted
by D*. And, the operator D can be inverted only on sections of V,
which are L2-orthogonal to the kernel of the D*. With the preceding
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understood, remark that without constraints on (79, (+9, u°)), one can,
at best, hope to solve only

(5.43)  Ds®+ JJ(r(r%) - (V(s + 8% +1%(s + %) + pO(5 + 5%)) = 0,

where [] is the L2-orthogonal projection onto the compliment of the
kernel of D*. For small 70 and small (10, x0) (say, in the C%1/2 Holder
space topology), a fixéd point construction finds a unique solution s°
o (5.43), which is L%-orthogonal to the kernel of D, and has C11/2
Hélder norm bounded by a uniform constant times the sum of |7°| and
the C%1/2 Holder norm of (0, u%). Furthermore, s has real analytic
dependence on the pair (v9, %), (Here, one can use the C*-Frechet
topology because the operator D is elliptic.) The analogous assertion
holds for #°.

Now, let [[® = 1 — [] as an operator on the space of sections of
V,. This is the L%-orthogonal projection onto the kernel of D*. It
follows from (5.42) and (5.43) that the intersection of D, with an ap-
propriate C%1/2 neighborhood of ¢ is homeomorphic to the subspace of
a neighborhood of the origin in C x5 C*®°(C; C) which consists of triples
(79, (10, u0)) satisfying the following two equations:

LITO(h(7%) - V(s + %) + 1%(s + s%) + u2(5 +57)) = 0.
(5.44)
2. TTC(R(70) - V(& + %) + 10(¢ + £°) + pP(E + E°)) = 0,

where the pair (s°,#°) should be thought of as real analytic functions
which are defined on a small ball about the origin in Cx, C*°(C;C). To
summarize: Equations (5.44) define a real analytic map, F, from a ball
in Cx C*®(C;C) into x, kernel(D*), and F~1(0,0) is homeomorphic to
a neighborhood of £ in D,,.

The analysis of F~1(0,0) proceeds by analyzing the differential of
F at (0,0). This differential is a linear map from C xo C*®(C;C) to
x 9 Kernel(D). To make this differential concrete, choose a linearly in-
dependent pair (u,v) € kernel(D*). Then, the differential of F' at (0, 0)
is the linear map which sends (79, (20, u%)) to

(5.450) F (0, (0%, 1)) = /C Real(f),
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where f is the following 2 x 2 complex valued matrix:

—7(.0 UL Vs upVig
f _h(T )Ek: (Eszk th,)
(5.45b)

0 UkSk  Uklk 0 UkSE  Tklk
T ; (ﬁlgsk- "fj_ktk> tH ; (E@Ek ﬁlgzk) )

Here, (s1,...,8,) are the components of the pull-back of s to C, and
the tx, ug, and vy are defined analogously.

The analysis of (5.45a) requires a lengthy digression to consider var-
ious properties of the kernel and cokernel of D. This digression occupies
the next five steps. The last step of the proof returns to the milieu of
(5.45a) to finish the story.

Step 3. This step reviews some group theory which is necessary for
the analysis of the kernels of D and D*. To begin, suppose that there is
but one orbit for the action via p of Z @ Z on the set {1,... ,n}. Let T}
denote p(1,0) and let T» denote p(0,1). Both T7 and T, generate cyclic
groups acting on {1,... ,n} of orders n; and ng, respectively. Assume,
without loss of generality, that n; > ny. There are two cases now to
consider. In the first case, n; = n. In this case, {1,... ,n} can be
relabled so that 71 -k = (k+1) mod (n). Here, T = T} for some integer
p in the set {0,... ,n — 1}.

In the second case, n; < n. Here, n; must divide n; and then
ng = n/ni. In this case, the set {1,... ,n} can be relabled so that

Ty-(kni+1+q) =kni+1+(@+1) mod (ny)
(5.46)
Tp-(kni+1+q) =(k+1) mod (n2) n1 +1+g,

where k € {0,... ,n2 — 1} and ¢ € {0,... ,n; — 1}.

Step 4. Assume, as before, that p has one orbit in {1,... ,n}. When
s € kernel(D), reintroduce O; C kernel(D), which is the representation
space of Z & Z that is spanned by vectors of the form p(a) - s where
a € Z @ Z. The dimension constraint on the kernel of D implies that
the dimension of O; is either 1 or 2. In either case, one has

Ty - s = cos(61)s + sin(6;)t,
(5.47)
Ty - s = cos(fa)s + sin(fs)t.
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Here 6, and 6, take values in [0,27), and sin(f;) and sin(f2) are not
both zero in the two dimensional case. Of course, ¢ is superfluous when
dim(O;) = 1; when dim(O;) = 2, then ¢ is some element in the kernel
of D, which is linearly independent from s. To make ¢t more precise,
it proves useful to pull s up to C and write s = (s1,...,5,). Then,
51(0) cannot vanish because, as remarked in Lemma 5.1, s is nowhere
vanishing on C,. With this understood, a metric on kernel(D) is defined
by taking the inner product between elements s and ¢ to be

(5.48) (s,) = ) Real(5x(0)t4(0)).
k

As this metric is invariant under the action of P, on C,,, one can choose
t in (5.47) to have the same norm as s and be orthogonal to s under the
metric in (5.48).

Note that (5.47) plus the vanishing of (5.48) does not uniquely define
the triple (01, 62,t). There are two choices; given the first, the second
is (2 — 61,27 — 02, —t). This sign ambiguity is fixed with the choice of
an orientation for O;. With the preceding understood, the convention
here will be to orient O, so that the restriction of (s,%) to any point in
C, gives the correct orientation for C. Lemma 5.1 insures that s and ¢
are everywhere linearly independent.

For the next remark, note that ¢ must transform under p as

T) -t = cos(61)t — sin(6,)s,
(5.49)
Ty -t = cos(f2)t + sin(fs)s.

Indeed, (5.49) follows from (5.47) with the observation that both T} and
T, must act as orientation preserving isometries of O;. To see that such
is the case for T} (for example), note first that 7} - s is obtained from s
by translating s by an appropriate deck transformation of the covering
f:C, — C. And, T3 - t is obtained from ¢t in a similar fashion. Since
s and ¢t are everywhere linearly independent (by Lemma 5.1), and C, is
connected, it follows that the restrictions of the ordered pairs (s,t) and
(T, - s,Ty - t) to any given point in C), must define the same orientation
on C.

As a final remark in this step, note that (5.48) and (5.49) imply that
¢1 = exp(i6;) obeys (' = 1 with n; being the order of T;. Likewise,
(2 = exp(ifz) obeys (3 = 1 where ny is the order of T5.
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Step 5. Fix s € kernel(D) and assume that O, is 2-dimensional.
Write the pull-back to C of s as (s1,. .. , Sn), and similarly write the pull-
back of ¢ as (¢1,... ,t,). In this case, each of s; and t is determined
by s1 and ;. To be precise,

Skni+q+1 = c08(g01 + kb3)s1 — sin(gbr + k62)11,
(5.50)
tkni+q+1 = sin(gh1 + kb2)s1 + cos(gbr + k62)11,

where ¢ € {0,... ,n; — 1} and k € {0,...n2 — 1}. In the case where
n; = n, the preceding formula holds with £ = 0.

Step 6. Make a similar analysis for the kernel of the L?— adjoint
of the operator D in the case where dim(O;) = 2. Note that this L?
adjoint D* of D sends a section w of V, to

(5.51) D*w = —0w + Tw + uw.
The kernel of D* is spanned by v = (u1,... ,un) and a similar v =
(v1,..- ,vn). As D has zero index, the kernel of D* is also a 2 dimen-
sional vector space, L;.
Lemma 5.20. Basis elementsu = (u1,... ,up) andv = (v1,... ,Vp)
or Ly can be chosen so that either
[
Uk (0)s(0) ﬂk(o)tk(o)) ( 1 ’i>
5.52a _ _ =n . ,
( ) zlc: (U}c(O)Sk(O) U}c(O)tk(O) — 1
or else
u(0)sk(0)  uk(0)tk (0)) ( 1 i)
5.52b =n . .
(5.526) Xk: (Uk(o)sk(o) v%(0)2x(0) —i 1

Furthermore, in the first case, (5.52b) is zero, and in the second case,
(5.52a) is zero.

Proof of Lemma 5.20. There are two parts to the proof of this
lemma. The first part starts by observing that there is a self-evident
version of Lemma 5.1 for D* with the following implications: First, a
basis (u,v) for Ls; can be chosen to obey the normalization (u,u) =
{(v,v) # 0 and {u,v) = 0 with {,) as in (5.48). Second, the group Z® Z
acts on the 2-dimensional space spanned by the pair (u,v), and (5.47),
(5.49) can be assumed obeyed with the replacement of s by u and ¢ by v.
Here, the angles (61, 62) can be assumed to be the same as those in the
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(s,t) version of (5.47) and (5.49). This follows from the constancy of the
group invariant index of the operator D on V, ® C under deformations
which move v and p to zero. (See Lemma 3.1.)

Note that there is some cost to making the angles in the (u,v) version
the same as those in the (s,t) version: There is no guarantee that the
orientation of L, as defined by (u,v) gives, upon restriction of (u,v) to
a point in C), the correct orientation for C. In fact, if this orientation
is correct, then (5.52a) will be seen to hold, and if said orientation is
incorrect, then (5.52b) will be seen to hold.

In any event, given that there is a (u,v) version of (5.47) and (5.49),
then one can conclude that the components {ux} and {vx} obey (5.50)
with the replacement of s; by u; and likewise ¢, by vg.

The second part of the proof remarks that ;% sz, and similar sums
can be computed in terms of s; and u; with the help of (5.50) and its
(u,v) analog. In particular, a straightforward calculation finds that

UpSk Urlk n [ sy +v1t1 Uil — U181
5.53 = —
(5.53) ; (ﬂsk mtk) 2 (-—ﬂm +7181 Uis1 + Uit

and

ULSk Ukl n { uisy + vty  urty —v181

(553b) ; (’UkSk ’Uktk) - E (—Ultl + v181 ups; + ’U1t1> )
By the way, this last equation holds for any 2 pairs (s,t) and (u,v)
of sections of V, as long as each pair satisfies (5.50). In particular,
using s for w and ¢ for v in (5.53a), this last equation implies that the
assumed orthogonality with respect to (5.48) for s and ¢ and the choice
of orientation for Oy require that ¢;(0) =7 - s1(0). Likewise, the correct
orthogonality for (u,v) with respect to (5.48) requires v1(0) = %i-uy(0).
In principle, u1(0) can be arbitrary, but to obtain Lemma 5.20, the
choice u1(0) = EllW must be made when v;(0) = 4u;(0). With this
choice, (5.53) implies Lemma 5.20. Indeed, in the case where v;(0) =
i-u1(0) and u (0) = ?ﬁo_’ then (5.52a) holds and the left-hand side of
(5.52b) is zero. In the case where v;(0) = —i - u1(0), one should choose
u1(0) = 5;55» and then the left-hand side of (5.52a) is zero and (5.52b)
holds.

Step 7. This step is not really needed for the proof of Lemma 5.13
but it is included for completeness. It considers the case where s €
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kernel(D) has dimension one O;. Now, T} s = €15 and also Ty - s = €33,
with €; o = £1. That is, the action of p on O; factors through Z/2.

In this case, the pull-back to C of s has the form (si1,...,sp), and
the preceding behavior under the action of p implies that s, = €;s; and,
in general, s = £s; where the choice of sign is determined by ¢; and
€2 via (5.46). Note in particular that when n is odd, the representation
is the trivial one.

Now, suppose that there exists a second element ¢ € kernel(D) which
is linearly independent of s. Because of Lemma, 5.1 the dimension of Oy
is one also. Furthermore, consider

Lemma 5.21. In the circumstances above, Qg is isomorphic to O
as a representaton of Z @& Z. In addition, the cokernel of D is also a
direct sum of two 1-dimensional representations of Z&Z, with each being
isomorphic to Os. Furthermore, the elements (s,t) in the kernel and
(u,v) in the kernel of D* can be chosen so that the elements of each pair
form an oriented, orthonormal basis for kernel(D) and cokernel(D*),
respectively, with respect to the inner product in (5.48). Finally, (5.53a)
can be assumed to hold.

Proof of Lemma 5.21. To prove the first assertion, one must show
that T7 acts with the same sign on s and ¢, and likewise for T,. To
see that such is the case, remember that (s,¢) are linearly independent
everywhere on C’ and so define a consistent orientation for C everywhere
on C’. This is impossible when one of (s,¢) changes sign with the
application of T} (or T%) and the other does not.

The second assertion of Lemma 5.21 follows from the first with the
equivariant index theorem. The third assertion, that concerning the
orthogonality of the pairs (s,t) and (u,v), can be proved by standard
linear algebra arguments. The assertion about (5.53a) follows from the
fact that each sy = €ps1,t; = €xt1 and similarly for u; and vy, where
€r = x1 is the same for sg, tg, ux and vg.

Step 8. This step returns to (5.45) to study the differential of the
map F. Assume here that O, is two-dimensional. To begin, remark
that the vanishing of F* defines not 4 equations but only two. This is
because the pairing between (s,t) and (u,v) which appears in (5.45b)
is invariant under the action of Z @ Z. To put this in perspective, fix
(79, (%, %)) in (5.44) and then consider this equation as a map from
kernel(D) to kernel(D*). In this guise, (5.44) is linear and equivariant
under the action of Z @ Z. This follows from the fixed point construction
of (s%,t%). Thus, the vanishing of the top row of the matrix F* implies
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the vanishing of the bottom row too.

The point of the proceeding is that the restriction of F* to the top
row in (5.45a, b) defines a linear map (call it F}) from x,C*®(C;C)
to R?. This last map is surjective, a fact which follows directly from
Lemma 5.20. The surjectivity of F} implies, with the help of the implicit
function theorem, that D, is locally a codimension-2 submanifold of
C x9 C®(C;C) near (r,(v,u)). (Remember here that F defines, for
fixed (19, u0), a Z @ Z equivariant map from kernel(D) to kernel(D*).
Thus, if the top row of F vanishes for a given triple (79, (9, x0)), then
the bottom row will vanish too.)

Proof of Theorem 1.2. What follows is an outline of the proof. The
discussion here is abbreviated because the argument is, for the most
part, the same in its essentials as that which proved Theorem 1.1. Most
aspects of the discussion also appear as parts of Sections 6 and 7 of [5].

To begin, fix a class e € H?(X;Z) and then consider the definition of
GW (e)(-) in Theorem 1.2 with the following modification to the defini-
tion: Require that H(e, J,T", ) consist of the, set of connected, pseudo-
holomorphic submanifolds which contain all members of 2, which in-
tersect precisely once all members of I', and whose fundamental class
is Poincaré dual to e. Count the elements in H by associating to each
element a sign, with the latter defined (assuming I’ # ¢) as in (2.15).
Denote the resulting number by RW(e)(J, T, ©2).

Arguments such as those which proved Proposition 5.2 can be used
to establish that RW(e)(J,T',Q) is well defined if the triple (J,T, Q)
are chosen from a suitably generic set. Indeed, some straightforward
modifications to the arguments in the proof of Proposition 5.2 prove
that there is a Baire set of triples (J,T', Q) for which the following are
true:

(5.54)
e The set H contains only finitely many elements.

o If (J', Q¥ T} is sufficiently close to (J,,T) in the Baire set, then
the corresponding set ' has the same number of elements as does
H.

e When C € H, then the operator D has trivial cokernel, and the
evaluation map H from kernel(D) to (®,eqrN|.) @ (S1<a<2pla)
is an isomorphism.
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Note that under the assumption that I' # ¢, considerations of mul-
tiply covered tori are irrelevant. For example, when I' contains 2n
elements, then a relevant “universal model” for the proof of (5.54)
is a space which consists of Diff(¥) orbits of data sets of the form

[(Z)7 (y)a (’U),j, (,0], J) (1'), (U)], where

(5.55)

e (2) = (21, s20—n), (¥) = (¥1,.--,¥Yp) and also (v) =
(v1,... ,Vop) are sets of unordered points in ¥ (here, d' > d and
n> ),

e j is an almost complex structure on ¥ which maps to some L;
from (5.5),

e ¢ is a smooth map from X into X such that p.[X] =e,

e J is an w-compatible, almost complex structure on X,

e (z) =(z1,...,Zqg—n) is a set of distinct points on X, and
o (u) = (u1,... ,upy) is such that uy € vy.

And, this data is constrained so that the following hold:

(5.56)

L wuj = Jps.

2. The differential of ¢ vanishes at each yy.

3. o(zk) = zk-

4. (yk) = uk.

5,  is an embedding off of a finite set of points.

Meanwhile, the arguments from Chapter 7 of [5] can be readily
adapted to the present situation to prove that RW(e)(J,T',Q) depends
only on e and the classes of the elements of I" in H;(X;Z).

The arguments which prove Proposition 5.2 establish that RW(e)(-)
takes the same value (J,I',Q) and on (J/, IV, Q') as long as each element
in T is isotopic to the corresponding element in IV. However, the step
from isotopy to homology is not complicated. In fact, one can modify
Proposition 5.2’s arguments directly by considering universal models as
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in (5.55) and (5.56) where one or more of the uy are constrained to lie
in some submanfold with boundary in X.

Given that RW{(e)(:) depends only on the homology classes of the
elements of I', it follows automatically that RW(e)(:) is in

®p>0(®p(H1(X;Z)/ Torsion).

Indeed, if [y] = [y1] + [72], then [y] can be represented by the disjoint
union 7y; Uyz, of embedded submanifolds, where «; represents [y1], and 2
represents [y2]. And, in this case, the sum which defines RW(e)(J,T, Q)
is identical to that which is obtained by adding those sums which define
RW (e)(J,T1,) and RW(e)(J, T2, ). It also follows from the definition
of the sign in (2.15) that the multi-linear functional RW(e)(-) is an
antisymmetric functional. (By construction, RW (e)(-) vanishes on AP()
when p is odd and when p > 2 - d(e).)

With the, invariant RW(e)(-) understood, the proof of Theorem 1.2
follows by rewriting GW(e)(-) as sums and products of the RW and Qu;
the formula here is analogous to the formula for Gr(e) in (5.12) and
Lemma 5.6.

6. A toroidal example

The purpose of this section is to provide some examples of sym-
plectic manifolds which illustrate the necessity of at least some of the
complications with multiply toroidal classes in the definition of Gr(e).
In particular, the examples here show that there is no reasonable in-
variant to assign to a multiply toroidal class e that counts only pseudo-
holomorphic submanifolds with fundamental class Poincaré dual to e.

To begin the story, fix a compact, oriented surface ¥. Let g denote
the genus of . Now, set

(6.1) X=8"x8"x%.

To define a symplectic form on X, introduce a standard coordinate,
t1 € [0, 1], for the leftmost circle in (6.1). Let t2 € [0, 1] denote a similar
coordinate for the middle factor of S! in (6.1). Fix a volume form w
for ¥ and fix a smooth, closed 1-form f on ¥ with only non-degenerate
zeros. With the preceding understood, set

(6.2) w=dt; Adte +w +dta A f.

883
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Note that any two symplectic forms which are described by (6.2) can
be connected by a continuous path of symplectic forms.

Now, consider the following compatible almost complex structure:
Define J so that J maps the 7Y summand in T X to itself and so that
the restriction of J on T'Y is compatible with w. In addition, define

7, 7, _1
(6.3) J-a—tl—a—t2+w - f,
where, w™! is the section of A2T'S which pairs with w to get 1.

Note that the canonical bundle of this X is isomorphic (as an ori-
ented 2-plane bundle) to the pull-back via projection to X of the canon-
ical bundle to ¥. With this understood, the cohomology class ¢ can
be written as (2g — 2) - e; where e is the class in H?(X;Z) which is
Poincaré dual to a copy of S x S' x {point}. Since e; - e; = 0, any
connected, pseudo-holomorphic curve whose Poincaré dual is a multiple
of e; will be a torus with trivial normal bundle.

The next task is to determine the pseudo-holomorphic submanifolds
which are Poincaré dual to n-e; when n > 1 is a positive integer. With
n fixed, the on going assumption will be that f and Vf have small
norm.

The first lemma below describes the relevant pseudo-holomorphic
submanifolds. The statement of the lemma requires the introduction of
the sets zero, {f} and zero_{f} of zeros of f with, respectively, even
and odd indices. (Locally, f = dh for a function A, and the £ here can
be interpreted as the sign of the determinant of the Hessian of & at the
critical point.)

Lemma 6.1. Fiz n > 1. There exists € > 0 with the following
significance: Let f be a closed 1-form with only non-degenerate zero
points and with |f| + |V f| < e everywhere.

1. The connected, pseudo-holomorphic submanifolds are of the form
(S x S') x p, where p is a zero point of f.

2. These submanifolds are non-degenerate in the sense of Definition
2.1, and they are n-non-degenerate in the sense of Definition 4.1.

8. If C = S' x S' xp with p a zero point of f, then the sign of det(D)
(as in (2.13)) is +1 if p € zero4(f), and —1 if p € zero_(f).

4. If C = S x S x p with p a zero point of f, and € H(C;Z/2)
is non-trivial, then sign(det(D,)) = 1.
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5. J is from the Baire subset which is described in (5.15).

This lemma. is proved below.

With the lemma understood, one can compute the sum (1.7) as
follows: First of all, if C is a connected, pseudo-holomorphic submani-
fold which appears (with some multiplicity, m) as an element of some
{(Ck,mg)} in H(e, J, D), then the Poincaré dual of [C}] must be a mul-
tiple of e;. This follows because the pseudo-holomorphic submanifolds
have locally positive intersection number, and thus must have positive
intersection number with the torus S x S! x {zero of f}. Hence, in
this case, Gr(n - e1) equals Qu(e;,n). The computation of the latter is
facilitated by introducing the generating function

(6.4) Gl2l =1+ Qu(er,n)2"

n>1

Then it follows from the definition of Qu(e;,n) in (5.16) and the defini-
tion of Py in (3.2) that G[z] can be rewritten as a product indexed by
the zeros of f. Here, each p € zero; f contributes a factor of Po (due
to Assertions 3 and 4 of Lemma 6.1), and each p € zero_{f} contributes
a factor of P_g. Thus, if m denotes the size of zero, (f), one has

2] = m+2 - 2g+m
(6.5) G[ ] — E{-}-_O)z)_ng_];(o]? i z)2g+m — (1 _ 2)29—2.

It is amusing to compare (6.5) with a count which includes only
pseudo-holomorphic submanifolds. For this purpose, note that when
n is larger than the number of zero of f, then according to Lemma
6.1, there are no pseudo-holomorphic submanifolds in the class n - e;.
Therefore, the pseudo-holomorphic submanifold count gives zero in this
case. If n is no greater than the number of zeros of f, then, according
to Lemma 6.1, the psuedo-holomorphic submanifolds of f in the class
n - e consist of the submanifolds of the form C = S! x S! x A, where
A is a set of n distinct zeros of f. Use the rule in (2.13) to define the
sign for the contribution of each such manifold. That is, when A is a set
of j distinct points in zero{f} and k distinct points in zero_{f}, then
the pseudo-holomorphic submanifold (S x §1) x A contributes (—1)¥ to
the sum for this hypothetical “invariant” for the class (7 + k) - e;. With
this contribution understood, it follows that the resulting generating
function for the pseudo-holomorphic submanifold count is equal to

(6.6) (14 2)™2(1 = 2)297™ = (1 — 2)972(1 - %)™ 2

885
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This generating function has an unpleasant dependence on the number
of zeros of f.

Here is another natural, but erroneous suggestion to repair (6.6):
Add to the count multiple covers of (S* x S') x p with the following
weights: Count a g-fold cover of (S! x S!) xp as +1 when p € zero, {f},
and count it as (—1)? when p € zero_{f}. This count produces the
generating functional

(6.7) (1=2)"""2(142)"29"™ = (14 2)72972(1 - %)=,

which also has an unpleasant dependence on the number of zeros.

The proof of Theorem 1.1 should make clear the fact that the con-
tribution to the generating functional from a point in zero, {f} must
be the inverse of that from a point in zero_{f}. Thus, the general form
for the generating functional of an invariant here must have the form
h(z)?9~2 where h(z) is any formal power series.

The remainder of this section is occupied with the proof of Lemma
6.1.

Proof of Lemma 6.1. There are three steps to the proof. The first
step establishes Assertion 1. The second step establishes that these sub-
manifolds are n-non-degenerate and that each det(D,) has the asserted
sign (Assertions 2-4). The third step proves the final assertion of the
lemma which concerns the almost complex structures J; near to those
in (6.3).

Step 1. To begin, let {fn} be a sequence of closed 1-forms on %
with the following properties:

(6.8)

1\ fm| + |V fim| <m~L.

2. For each m, there is a connected, pseudo-holomorphic (with J
defined using f,,) submanifold C,, C X whose fundamental class
is Poincaré dual to ng - e for some positive ng < n.

The claim is that when m is large, the integer n above must be equal
to 1, and C,, has the form S! x S! x p, where p is a critical point of
fm. Accept this claim for the moment and it follows directly that there
exists € > 0 with the following significance: Suppose that f is a smooth,
closed 1-form with non-degenerate zeros and |f| + |V f| < e. Then the
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connected, pseudo-holomorphic submanifolds of the resulting J have the
form S! x S! x p with p being a zero of f. This is Assertion 1 of Lemma
6.1.

With the preceding understood, the remainder of Step 1 is occupied
with a proof of the preceding claim.

To start the proof, it is necessary to first study the pseudo-holomor-
phic curves in the case where f = 0. In this case, X is a complex
manifold (call it X;) arid the projection of Xy onto ¥ is a holomorphic
map. This implies that the holomorphic curves in Xy with fundamental
class Poincaré dual to n - e; project to points in X.

Now consider the sequence {Cp,} as above. Using known compact-
ness properties of pseudo-holomorphic maps [2], [6] and [15], [5], one can
show that there is a subsequence (henceforth renumbered as the origi-
nal) such that the sequence {Cy,} converges to a complex submanifold
C C X, which is a union of n or less tori, each of the form S x S!x
point. In particular, the maximum distance from points of Cp, to C
tends to zero as m tends to infinity. Since each C, is assumed con-
nected, it follows C = S* x S! x py, where pg is a single point in .

Now, the operator D for the submanifold C is simply the operator
0=1 (aaTl +i'a%') on S! x S!. Its kernel consists of the constant
functions. Thus, one can argue as in the proof of Lemma 5.15 that the
Poincaré dual to Cy, is equal to e;.

Now, let p: X —s S' x S! denote the projection onto the obvious
factor in (6.1). This map is pseudo-holomorphic (no matter what the
choice of f). The restriction of p to Cy, is therefore holomorphic, which
implies that p is 1 to 1. With this understood, Cy, (for m large) can be
written as a graph over C. That is, let (z,y) be local coordinates for ¥
near pg chosen so that J - a% = 5% and so that w|y, = dz Ady. Then
C;,, has the form

(6.8) (t1,t2, z(t1, t2), y(t1, 2)),

where z and y are now functions of the variables (t1, t3).
The assertion that C,, is pseudo-holomorphic translates into the
following system of differential equations for n = z + iy:

= 1

where & is defined by the identity w = & - dz A dy, and f5 is defined by
writing f = fzdfj+ f,dn. One is looking here for a solution of (6.9) with
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In| everywhere small. In fact, given € > 0, then the relevant solution to
(6.9) will have |n| < € everywhere if m is sufficiently large.

With the preceding understood, the next task is to prove that (6.9)
has no non-trivial solutions as described with small norm for 7. Indeed,
consider first the case where the point py is not a critical point of f. In
this case,

(6.10) %fﬁ: co + O(e)

with ¢y being a non-zero constant. Then, integration of both sides of
(6.9) over C produces, after an integration by parts, the assertion that
the norm of ¢y is O(e). Since ¢g is determined by py, this is impossible
when € is small (hence, when m is large.)

This last argument shows that py must be a critical point of f in
order for (6.9) to have an appropriate size solution for all m. In this
case, one must replace (6.10) by

10f — 2
11 2 o —y- i
(6.11) 5= v =+ Onl?)
Here,
Ofq
= —%’nzo a.nd
(6.12)
_ _Qf_ﬁ‘
Bﬁ n=0

are determined by f at pg. Remark now that if there are nontrivial
solutions 7 to (6.9) and (6.11) with arbitrarilly small norm everywhere,
then there will be a nontrivial solution to the equation

(6.13) on + vy + um = 0.

This is just the argument in the proof of Lemma 5.3. However, a corol-
lary of the following lemma is that there are no non-trivial solutions to
(6.13) when v and p are small and f has non-degenerate critical points.

Lemma 6.3. Let C be a complez torus given as C/H, where H C C
is a lattice generated by (1,7) with im(7) > 0. Let v and pu be complex
numbers. Then any complex valued function n on T which solves (6.13)
is a linear combination of functions of the form:

n=a-exp(i - Re(oz)) + B exp(—i - Re(oz2)).
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Here, 0 and «, B are constrained so that:

1. Re(o),Re(o7) € 2nZ.
o JuP =—Yol + 2.
3. Re(av) = 0.

4 a(-¥ +7)+mB=0.
5. 8 =a when o =0.

Proof of Lemma 6.3. This follows by Fourier transforming (6.13).

By Lemma 6.3, for a given complex torus C there are no non-
constant solutions to (6.13) when (v,p) are small. Furthermore, in
the case where v and p are both small, the existence of the constant
solution requires |u|? = |v|2. In the circumstances of Lemma 6.1, both v
and p are determined by the 15% order Taylors expansion of the 1-form
f at zero pg, and the condition [u|? = [v|? is forbidden when pq is a
non-degenerate zero.

This last assertion proves the claim that for all m sufficiently large,
the submanifold C,, must equal S' x S! x py where pg is a zero of fy,.

Step 2. First of all, one must suppose that |f| + |V f| are small
so that all pseudo-holomorphic submanifolds with fundamental class
Poincaré dual to n-e; have n = 1 and are of the form S! x S§! x p, where
p is a critical points of f. It then follows immediately from Lemma 6.3
that C' is n-non-degenerate, when v and p are small, and f has non-
degenerate zeros. Here, the maximum size of |f| + |V f| depends on n.
Indeed, as explained in Section 5, any section s of some V, ® C in the
kernel of D, which is the operator on the left-hand side of (6.13) can be
interpreted as a function on some covering torus C’ which is annihilated
by the operator D for C’. (The operator D on C’ is also given by the
same left-hand side of (6.13).)

As for sign(det(D)), from the definition, (2.13), and Lemma 6.3 it
follows that sign(det(D)) = 1 when |u|? < |v|?, and sign(det(D)) = ~1
when |u|?2 > |v|2. This is to say that sign(det(D)) = £1 depending on
whether p € zeros{f}. The fact that sign(det(D,)) = 1 for non-zero ¢
follows by a similar analysis.

889

Step 3. To prove the final part of Lemma 6.1, remark first that the

first two conditions of (5.15) have already been established, so it remains
only to prove that the third condition is obeyed. With the preceding
understood, assume, to the contrary, that this last part of (5.15) is false.
This assumption will be seen to yield a contradiction, thus proving the
assumption false and the last assertion of Lemma 6.1 true.
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To obtain the needed contradiction, note first that under the as-
sumption above, there would exist, for each positive integer m, a func-
tion f, having non-degenerate zeros and with |fm| + |V fm| < m™L.
Furthermore, for each m, the almost complex structure J (as defined
using f = fm in (6.3)) would be a limit of almost complex structures
which had more pseudo-holomorphic submanifolds then had J = Jp,.
By the Gromov compactness theorem, as in [6] and [15], and Lemma
5.3 one could then conclude, that there is a complex torus C,, and a
Jm-holomorphic map ¢, : C;y — X that has the following two prop-
erties:

(6.14)

1. ¢m pushes the fundamental class of C), forward as the Poincaré
dual of ng - e; for some positive ng < n. (Cusp curves do not arise
here because ng - e; is not a spherical class.)

2. dypm = 0 somewhere.

As remarked, such a pair (Cy,,@m) would exist for each m, and
then the compactness theorem in [6] and [15] could be invoked to con-
clude that such a pair (C, ¢) would exist with ¢ being Jy-holomorphic.
However, all Jo-holomorphic tori factor through (S! x S x {Point}) as
covering maps, so a contradiction to the original assumption is obtained.

7. D on other surfaces

This section is a non-sequitor as far as the other sections are con-
cerned in that its purpose is only to illustrate how to use an analog of
D in (2.7) to prove the Riemann-Roch theorem on a compact, complex
surface. To be precise, suppose that C is a compact, complex surface of
genus g, and that £ — C is a holomorphic line bundle. According to
the Riemann-Roch theorem, the index of the 8 , as it maps sections of
E to sections of T%1C ® E, is given by

(7.1) index(8) = ¢;(E) +1 —g.

What follows in this section is a novel (at least to the author) proof
of (7.1): Fix a section uo of T*°C ® E? with non-degenerate zeros. Fix
a positive number r and set » = 0 and p = r - yg. With these choices
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understood, use (2.7) to define a differential operator, D : C*(E) —
C®(TC ® E). Here, D is understood to be R-linear as opposed to
being C-linear. As D differs from d by a zero’th order term, the index
of D as a real operator is equal to twice the index of 3 as a complex
operator.

In order to compute the index of D, it is important to recall that
the Euler class of a complex line bundle FF — C can be computed by
a weighted count (with +1 as weights) of the zero’s of a section A of F
which vanishes transversely. Indeed, at a zero, z, of F', the differential
of A gives a well defined R-linear homorphism from T'C|; to F|;. If A
vanishes transversely at z, then this homomorphism is an isomorphism.
Thus, z contributes +1 to the Euler class count when this isomorphism
is orientation preserving. Otherwise, z contributes -1.

Now return to the operator D. Take a Riemannian metric on X
which is compatible with the complex structure. Also, fix a hermitian
structure on E. Now D has a Bochner-Weitzenboch formula whose
integral form is as follows:

(7.2) /C |Ds|? = /C (18s + vs|* + Re((Tp — 0p)3%) + |ul?s|?) -

This Bochner-Weitzenboch formula can be used to prove that for
large r, the support of any s € kernel(D) is concentrated near the set
of zeros of pg. To be precise here, fix ¢ > 0 and p > 0. Then, for all
r sufficiently large and for any s in the kernel of D (for the given r),
all but a fraction less than ¢ of the L? norm of s is accounted for by
integrating solely over the radius p balls about the zeros of po. The
point is that the left-hand side of (7.2) is zero, and the right-hand side
is O(r?) if s has a significant fraction of its support away from the zeros
of ug. A similar Bochner-Weitzenboch formula holds of D*. Thus, the
support of any s* € cokernel(D) is concentrated near the zeros of p¢ for
large 7.

More to the point, with the help of an r-dependent dilation around
a zero of pg, one can prove that each positive zero contributes, for r
sufficiently large, a 1-dimensional subspace to the kernel of D, while
each negative zero contributes at large r a 1-dimensional subspace to
the cokernel of D. After dilating, the analysis reduces to that for the
operator D on C where v = 0 and p is an R-linear isomorphism from
C to C. If the linear map p here preserves orientation, then D has a
one-dimensional L2-kernel and trivial cokernel. If i reverses orientation,
then the opposite occurs. These remarks are proved with some simple
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integration by parts tricks. Note that the kernels of D and D* can be
written out explicitly in the case where y is a linear function on C. For
example, if 4 = pp - 2, then the L? — kernel of D is the real span of
A-eT#l* where A% = ,ual.

Thus, this large r localization of the kernel and cokernel of D to
Ho 1(0) makes the count for the index of D equal to that for the Euler
class of T*°C @ E?. This number is 2 - (c;(E) +1 — g).
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